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Abstract - In this paper we describe special features of the Mizar system which 
provide some elements of computer algebra and present how they strengthen the 
capabilities of the Mizar checker. 
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1. Introduction 
 
    The original goal of the Mizar project was to design and implement a software 
environment that supports writing traditional mathematics papers.  Mathematical practice 
shows that even in formal proofs some easy background reasoning can be reduced.  
There are many powerful systems that efficiently process numeric and symbolic 
computation.  Similar techniques incorporated into the Mizar system would considerably 
benefit the Mizar user community.  At the moment, the inference checker uses model 
elimination with stress on processing speed, not power.  However, its power can be 
extended in several ways.  In this paper we discuss how properties that can be associated 
with Mizar definitions and the requirements directive can strengthen the process of 
inference justification in Mizar.  Both these features influence how equality classes are 
generated in the EQUALIZER - the module responsible for the equality calculus in the 
Mizar checker (cf. [13]).  Their effects can substantially reduce the amount of justification 
an author must provide in a proof.  Used in connection with suitable management utilities 
these features stimulate the growth and evolution of the Mizar Mathematical Library 
(MML)1. 
 
 

2. Properties 
 
     As described in [10], there are four main kinds of constructors in Mizar: predicates, 
functors, modes and attributes.  The Mizar system allows for special automated 
processing of certain properties of the first two types.  The properties currently 
implemented for predicates (constructors of formulae) include:  symmetry, asymmetry, 
reflexivity, irreflexivity, and connectedness.  The properties for functors (constructors 
of terms) are:  commutativity, idempotence , involutiveness, and projectivity.  When 

                                                 
   Manuscript received October 1, 2001; revised July 3, 2002. 
   
1 The MML is the data base of Mizar articles.  The systematic collection started in 1989.  At the time of 

this writing it contains 724 articles (about 54 MB of Mizar texts). 



 

included in a definition of a predicate or a functor, the above-mentioned properties can be 
automatically used by the Mizar checker in every inference step which concerns that 
constructor.  In that case, corresponding statements and references to these statements 
become superfluous.  The properties are paired with a justification of suitable correctness 
conditions which we describe below.  We also discuss the restrictions which are necessary 
to avoid a collapse of system consistency. 
 
 

2.1  Predicate Properties 
 
     In general, a Mizar predicate with properties is defined as: 
 

definition 
let x be 

1
θ ; 

let y be 
2

θ ; 
pred Example_Pred x,y means  
δ (x,y);     ::  the definiens of the  predicate 
predicate-property-symbol proof ... end; 
... 
end; 
 
definition 
let x be 

1
θ ; 

let y be 
2

θ ; 
pred Example_Pred x,y means  
δ (x,y);     ::  the definiens of the predicate 
predicate-property-symbol proof ... end; 
... 
end; 

 
where predicate-property-symbol is one of the following:  asymmetry, symmetry, 
reflexivity, irreflexivity, and connectedness.  The properties are accepted only when 
the types 

1
θ  and 

2
θ  are equal.  The following table contains a summary of predicate 

properties with suitable justification formulae.  Examples of all properties taken from MML 
are presented below.  
 

Predicate property Formula to be proved as justification 
asymmetry for x,y being 

1
θ  holds δ (x,y) implies not δ (y,x) 

symmetry for x,y being 
1

θ  holds δ (x,y) implies δ (y,x) 
reflexivity for x being 

1
θ  holds δ (x,x) 

irreflexivity for x being 
1

θ  holds not δ  (x,x) 
connectedness for x,y being 

1
θ holds not δ (x,y) implies δ (y,x) 

 
We illustrate asymmetry with the Mizar primitive in predicate.  This predicate has no 
accompanying justification because it is built into the Mizar system.  The article HIDDEN 
([6]) documents built-in notions. 
 

definition  
 let x,X be set; 
  pred x in X; 



 

 

  asymmetry; 
end; 

 
As an example of the symmetry property, we show a predicate satisfied whenever two sets 
have an empty intersection (XBOOLE_0:def 72, [4]).  It sometimes happens, as in this 
example, that the condition is obvious for the checker and no justification is needed. 
 

definition 
 let X,Y be set; 
  pred X misses Y means :Def7: 
   X /¥ Y = {}; 
  symmetry; 
  antonym X meets Y; 
end; 

 
An example of reflexivity is the divisibility relation for natural numbers (NAT_1:def 3, [1]) 
presented below:  
 

definition 
let k,l be natural number; 

pred k divides l means :Def3:  
ex t being natural number st l = k * t; 

reflexivity 
proof 

let i be natural number; 
i = i * 1; 
hence thesis; 
end; 

end;                                       
 
An example of a predicate with irreflexivity is the proper inclusion of sets (XBOOLE_0:def 
8, [4]). 
 

definition let X,Y be set; 
 pred X c< Y means :Def8: 
  X c= Y & X <> Y; 
 irreflexivity; 
end; 

 
We demonstrate connectedness with the redefinition of inclusion for ordinal numbers 
(ORDINAL1, [2]). 
 

definition 
 let A,B be Ordinal; 
 redefine pred A c= B; 
  connectedness 
   proof 
    let A,B be Ordinal; 
    A in B or A = B or B in A by Th24; 
    hence thesis by Def2; 
   end; 

                                                 
2 The phrase Article-Identifier:def Definition-Number follows the convention which identifies all Mizar 

definitions in the MML. 



 

 

end; 
 
Here, Th24 and Def2 refer to: 
 

theorem Th24: 
 for A,B being Ordinal holds A in B or A = B or B in A 
 
definition let X be set; 
 attr X is epsilon-transitive means :Def2: 
  for x being set st x in X holds x c= X; 
end; 

 
We note that a similar concept could also be implemented for modes since they are in fact 
special kinds of predicates.  For example, reflexivity seems useful for a mode constructor 
like Subset of.  Also, the set of currently implemented predicate properties is not purely 
accidental.  Since every Mizar predicate can have an antonym, each property has a 
counterpart related to the antonym.  For example, reflexivity automatically means 
irreflexivity for an antonym and vice versa.  The same can be said for the pair 
connectedness and asymmetry.  Obviously, symmetry of an original constructor and its 
antonym are equivalent. 
 
 

2.2  Functor Properties 
 
     The properties of binary functors in Mizar are commutativity and idempotence .  In 
general, we define a binary functor with properties in the following form: 
 

definition 
 let x be 

1
θ ; let y be 

2
θ ; 

  func Example_Func(x,y) -> 
3

θ  means 
   δ  (it,x,y); 
  binary-functor-property-symbol proof ... end;  
  ... 
end; 

 
where binary-functor-property-symbol is commutativity or idempotence , and the Mizar 
reserved word 'it' in the definiens denotes the value of the functor being defined. 
 

Binary functor property Formula to be proved as justification 
commutativity for x being 

3
θ , y being 

1
θ , z being 

2
θ  

holds δ (x,y,z) implies δ (x,z,y) 
idempotence for x being 

1
θ holds δ (x,x,x) 

 
An example showing both binary functor properties is the set theoretical join operator 
(XBOOLE_0:def 2, [4]). 
 

definition 
 let X,Y be set; 
  func X ¥/ Y -> set means :Def2: 
   x in it iff x in X or x in Y; 
  existence proof ... end; 
  uniqueness proof ... end; 



 

 

  commutativity; 
  idempotence; 
end; 

 
With the current implementation, commutativity is only applicable to functors for which the 
result type is invariant under swapping arguments.  Furthermore, idempotence  requires 
that the result type be wider than the type of the argument (or equal to it). 
     The Mizar unary functor with properties uses the form below: 
 

definition 
 let x be 

1
θ ; 

  func Example_Func(x) -> 
2

θ  means 
δ (it,x); 

 unary-functor-property-symbol proof ... end;  
  ... 
end; 

 
where unary-functor-property-symbol is involutiveness or projectivity.  The system 
consistency is protected by the restriction that types 

1
θ  and 

2
θ  be equal. 

 
Unary functor property Formula to be proved as justification 
involutiveness for x,y being 

1
θ holds δ (x,y) implies δ (y,x) 

projectivity for x,y being 
1

θ holds δ (x,y) implies δ (x,x) 
 
The involutiveness property is used with the inverse relation (RELAT_1:def 7, [14]). 
 

definition 
 let R be Relation; 
  func R~ -> Relation means :Def7: 
   [x,y] in it iff [y,x] in R; 
  existence  proof ... end; 
  uniqueness  proof ... end; 
  involutiveness; 
end; 

 
As an example of projectivity we give the functor for generating the absolute value of a 
real number (ABSVALUE:def 1, [9]). 
 

definition 
 let x be real number; 
 func abs x -> real number equals :Def1: 
             x if 0 <= x 
             otherwise  -x; 
 coherence; 
 consistency; 
 projectivity by REAL_1:66; 
end; 

 
Here, REAL_1:66 ([8]) refers to: 
 

theorem :: REAL_1:66 
 for x being real number holds x < 0 iff  0 < -x; 



 

 

Due to some problems in implementation, the idempotence , involutiveness, and 
projectivity properties are not available for redefined objects as yet. 
 
 

3. Requirements 
 
     The requirements directive, which is comparatively new in Mizar3 allows for special 
processing of selected constructors.  Unlike the properties described in Section 2, it 
concerns the environ part of a Mizar article (cf. [10]).  With the requirements directive, 
some built-in concepts for selected constructors will be imported during the accommodation 
stage of processing an article.  In the MML database they are encoded in special files with 
extension '.dre'.  As yet, the special files in use are:  HIDDEN, BOOLE, SUBSET, ARYTM, 
and REAL.  We describe how they assist the Mizar checker with the work of reasoning so 
that the amount of justification an author must provide can be reduced. 
 
 

3.1  requirements HIDDEN 
 
     This directive is automatically included during accommodation of every article and 
therefore does not need to be used explicitly.  It identifies the objects defined in the 
axiomatic file HIDDEN, i.e., the mode set followed by the ‘=' and 'in' predicates 
(HIDDEN:def 1 - HIDDEN:def 3, [6]).  Mode set is the most general Mizar mode and every 
other mode widens to it.  Thanks to the identification provided by requirements HIDDEN it 
is used internally wherever the most basic Mizar type is needed, e.g., while generating 
various correctness conditions.  The fundamental equality predicate '=' is extensional 
which means that two objects of the same kind (atomic formulae, types, functors, attributes) 
are equal when their arguments are equal.  This particular property is used frequently by 
the Mizar checker.  The '=' relation is also symmetric, reflexive, and transitive.  Predicate 
'in' plays an important role in the “unfolding” of sentences with the Fraenkel operator in 
positive and negative contexts. This allows sentences of the form ex y being θ  st x=y & 
P[y] to be true whenever x in {y being θ  : P[y]} is true and vice versa.  Various features 
of the 'in' predicate are considered in conjunction with other requirements (see Sections 3.2, 
3.3). 
 
 

3.2  requirements BOOLE 
 
     When processing an article with requirements BOOLE, Mizar treats specially the 
constructors provided for:  the empty set ({}), attribute empty, set theoretical join (¥/), meet 

(/¥), difference (¥), and symmetric difference (¥+¥) given in definitions XBOOLE_0:def 
1-XBOOLE_0:def 6, [4]).  It allows the following frequently used equations to be accepted 
without any external justification: X ¥/ {} = X, X /¥ {} = {}, X ¥ {} = X, {} ¥ X = {}, and {} ¥+¥ X = 
X.  The empty set also gets additional properties:  x is empty implies x = {}, and 
similarly x in X implies X is non empty.  Additional features concerning the empty set are 
also described in the next section4. 
 
 

                                                 
3 Historically, the first requirements directive was ARYTM, introduced in 1995.  The most recent is 

BOOLE, implemented in 2001. 
4 Recently, the Library Committee decided to provide a special article covering the proofs of requirements 

which can be formulated as Mizar statements.  The first article of that series is BOOLE, [5]. 



 

 

3.3  requirements SUBSET 
 
     This requirements directive concerns the definition of inclusion (TARSKI:def 3, [11]), 
the power set (ZFMISC_1:def 1, [3]) and also mode 'Element of ' (SUBSET_1:def 2) with a 
following redefinition, [12]).  With this directive X c= Y automatically yields X is Subset of 
Y and vice versa.  The property of the form x in X & X c= Y implies x in Y is incorporated 
as well5.  When BOOLE is also applied in the requirements directive, the formula x in X is 
equivalent to x is Element of X & X is non empty.  
 
 

3.4  requirements ARYTM 
 
     Specification of requirements ARYTM  concerns the definitions provided in the article 
ARYTM ([7]):  the set REAL (ARYTM:def 1), the redefinition of the set NAT as a Subset 
of REAL, the real addition and multiplication operations (ARYTM:def 3, def 4) and the 
natural ordering of real numbers (ARYTM:def 5).  It provides the correspondence between 
numerals and numbers defined in the MML.  Without requirements ARYTM and SUBSET, 
numerals are just names for (not fixed) sets. With them, numerals obtain internally the type 
Element of NAT  and appropriate values stored as rational numbers.  These values are 
also used to assign a proper order between numerals.  It also makes basic addition and 
multiplication operations on rational numbers accepted by the checker with no additional 
justification.  The numerators and denominators of Mizar numerals must not be greater 
than 32767 (the maximum value for a 16-bit signed integer), although all internal 
calculations are based on 32-bit integers.  For example, the following equalities can be 
easily calculated and therefore they are obvious: x + 0 = x, x * 0 = 0, x * 1 = x.  More 
processing capabilities for other arithmetic operations are introduced by the requirements 
REAL directive (see Section 3.5). 
 
 

3.5  requirements REAL 
 
     This enables special processing of real expressions based on the constructors 
REAL_1:def 1 - REAL_1:def 4, [8].  As with ARYTM , the Mizar checker uses the rational 
value associated with real variables and a built-in GCD routine to evaluate new equalities.  
In particular, the following equalities are directly calculated at this stage: x / 1 = x, x - 0 = x, 
etc. 
 
 

4 Conclusions 
 
     The above considerations show that there are quite efficient mechanisms in Mizar 
that provide some elements of computer algebra.  The idea of implementing such features 
was based on statistical observations showing the extensive use of special constructs.  
The introduction of these techniques has a strong influence on the maintenance of the 
MML. However, the distinction between the function of properties and requirements is not 
always clear.  In some cases, it is hard to decide which of these techniques is the best 
implementation.  Requirements are much more flexible, but on the other hand, properties 
are a regular language construct and are not so system dependent. Every Mizar user can 
decide whether or not to use properties for newly created definitions while a new 
requirements directive yields a partial reimplementation of the system.  Some of the 
features currently implemented as requirements could be transformed into some kind of 
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properties.  In particular, this would concern the properties of neutral elements as 
described in Sections 3.4 and 3.5.  There is still discussion on what would be the best 
syntax for such a neutrality property.  Another area of interest is the implementation of the 
associativity and transitivity properties.  However, this work still remains in the to-do list 
due to some problems with finding an approach that will generate an efficient 
implementation. 
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