
Basic Elements of Computer Algebra in MIZAR

Adam Naumowicz† Czeslaw Bylinski††

†Institute of Computer Science
University of Bialystok, Poland

adamn@math.uwb.edu.pl

††Section of Computer Networks
University of Bialystok, Poland

bylinski@math.uwb.edu.pl

Abstract - In this paper we describe special features of the Mizar system which
provide some elements of computer algebra and present how they strengthen the
capabilities of the Mizar checker.

Keywords – Mizar checker, computer algebra, requirements directive, properties
of Mizar functors and predicates

1. Introduction

 The original goal of the Mizar project was to design and implement a software
environment that supports writing traditional mathematics papers. Mathematical practice
shows that even in formal proofs some easy background reasoning can be reduced.
There are many powerful systems that efficiently process numeric and symbolic
computation. Similar techniques incorporated into the Mizar system would considerably
benefit the Mizar user community. At the moment, the inference checker uses model
elimination with stress on processing speed, not power. However, its power can be
extended in several ways. In this paper we discuss how properties that can be associated
with Mizar definitions and the requirements directive can strengthen the process of
inference justification in Mizar. Both these features influence how equality classes are
generated in the EQUALIZER - the module responsible for the equality calculus in the
Mizar checker (cf. [13]). Their effects can substantially reduce the amount of justification
an author must provide in a proof. Used in connection with suitable management utilities
these features stimulate the growth and evolution of the Mizar Mathematical Library
(MML)1.

2. Properties

 As described in [10], there are four main kinds of constructors in Mizar: predicates,
functors, modes and attributes. The Mizar system allows for special automated
processing of certain properties of the first two types. The properties currently
implemented for predicates (constructors of formulae) include: symmetry, asymmetry,
reflexivity, irreflexivity, and connectedness. The properties for functors (constructors
of terms) are: commutativity, idempotence , involutiveness, and projectivity. When

 Manuscript received October 1, 2001; revised July 3, 2002.

1 The MML is the data base of Mizar articles. The systematic collection started in 1989. At the time of

this writing it contains 724 articles (about 54 MB of Mizar texts).

included in a definition of a predicate or a functor, the above-mentioned properties can be
automatically used by the Mizar checker in every inference step which concerns that
constructor. In that case, corresponding statements and references to these statements
become superfluous. The properties are paired with a justification of suitable correctness
conditions which we describe below. We also discuss the restrictions which are necessary
to avoid a collapse of system consistency.

2.1 Predicate Properties

 In general, a Mizar predicate with properties is defined as:

definition
let x be

1
θ ;

let y be
2

θ ;
pred Example_Pred x,y means
δ (x,y); :: the definiens of the predicate
predicate-property-symbol proof ... end;
...
end;

definition
let x be

1
θ ;

let y be
2

θ ;
pred Example_Pred x,y means
δ (x,y); :: the definiens of the predicate
predicate-property-symbol proof ... end;
...
end;

where predicate-property-symbol is one of the following: asymmetry, symmetry,
reflexivity, irreflexivity, and connectedness. The properties are accepted only when
the types

1
θ and

2
θ are equal. The following table contains a summary of predicate

properties with suitable justification formulae. Examples of all properties taken from MML
are presented below.

Predicate property Formula to be proved as justification
asymmetry for x,y being

1
θ holds δ (x,y) implies not δ (y,x)

symmetry for x,y being
1

θ holds δ (x,y) implies δ (y,x)
reflexivity for x being

1
θ holds δ (x,x)

irreflexivity for x being
1

θ holds not δ (x,x)
connectedness for x,y being

1
θ holds not δ (x,y) implies δ (y,x)

We illustrate asymmetry with the Mizar primitive in predicate. This predicate has no
accompanying justification because it is built into the Mizar system. The article HIDDEN
([6]) documents built-in notions.

definition
 let x,X be set;
 pred x in X;

 asymmetry;
end;

As an example of the symmetry property, we show a predicate satisfied whenever two sets
have an empty intersection (XBOOLE_0:def 72, [4]). It sometimes happens, as in this
example, that the condition is obvious for the checker and no justification is needed.

definition
 let X,Y be set;
 pred X misses Y means :Def7:
 X /¥ Y = {};
 symmetry;
 antonym X meets Y;
end;

An example of reflexivity is the divisibility relation for natural numbers (NAT_1:def 3, [1])
presented below:

definition
let k,l be natural number;

pred k divides l means :Def3:
ex t being natural number st l = k * t;

reflexivity
proof

let i be natural number;
i = i * 1;
hence thesis;
end;

end;

An example of a predicate with irreflexivity is the proper inclusion of sets (XBOOLE_0:def
8, [4]).

definition let X,Y be set;
 pred X c< Y means :Def8:
 X c= Y & X <> Y;
 irreflexivity;
end;

We demonstrate connectedness with the redefinition of inclusion for ordinal numbers
(ORDINAL1, [2]).

definition
 let A,B be Ordinal;
 redefine pred A c= B;
 connectedness
 proof
 let A,B be Ordinal;
 A in B or A = B or B in A by Th24;
 hence thesis by Def2;
 end;

2 The phrase Article-Identifier:def Definition-Number follows the convention which identifies all Mizar

definitions in the MML.

end;

Here, Th24 and Def2 refer to:

theorem Th24:
 for A,B being Ordinal holds A in B or A = B or B in A

definition let X be set;
 attr X is epsilon-transitive means :Def2:
 for x being set st x in X holds x c= X;
end;

We note that a similar concept could also be implemented for modes since they are in fact
special kinds of predicates. For example, reflexivity seems useful for a mode constructor
like Subset of. Also, the set of currently implemented predicate properties is not purely
accidental. Since every Mizar predicate can have an antonym, each property has a
counterpart related to the antonym. For example, reflexivity automatically means
irreflexivity for an antonym and vice versa. The same can be said for the pair
connectedness and asymmetry. Obviously, symmetry of an original constructor and its
antonym are equivalent.

2.2 Functor Properties

 The properties of binary functors in Mizar are commutativity and idempotence . In
general, we define a binary functor with properties in the following form:

definition
 let x be

1
θ ; let y be

2
θ ;

 func Example_Func(x,y) ->
3

θ means
 δ (it,x,y);
 binary-functor-property-symbol proof ... end;
 ...
end;

where binary-functor-property-symbol is commutativity or idempotence , and the Mizar
reserved word 'it' in the definiens denotes the value of the functor being defined.

Binary functor property Formula to be proved as justification
commutativity for x being

3
θ , y being

1
θ , z being

2
θ

holds δ (x,y,z) implies δ (x,z,y)
idempotence for x being

1
θ holds δ (x,x,x)

An example showing both binary functor properties is the set theoretical join operator
(XBOOLE_0:def 2, [4]).

definition
 let X,Y be set;
 func X ¥/ Y -> set means :Def2:
 x in it iff x in X or x in Y;
 existence proof ... end;
 uniqueness proof ... end;

 commutativity;
 idempotence;
end;

With the current implementation, commutativity is only applicable to functors for which the
result type is invariant under swapping arguments. Furthermore, idempotence requires
that the result type be wider than the type of the argument (or equal to it).
 The Mizar unary functor with properties uses the form below:

definition
 let x be

1
θ ;

 func Example_Func(x) ->
2

θ means
δ (it,x);

 unary-functor-property-symbol proof ... end;
 ...
end;

where unary-functor-property-symbol is involutiveness or projectivity. The system
consistency is protected by the restriction that types

1
θ and

2
θ be equal.

Unary functor property Formula to be proved as justification
involutiveness for x,y being

1
θ holds δ (x,y) implies δ (y,x)

projectivity for x,y being
1

θ holds δ (x,y) implies δ (x,x)

The involutiveness property is used with the inverse relation (RELAT_1:def 7, [14]).

definition
 let R be Relation;
 func R~ -> Relation means :Def7:
 [x,y] in it iff [y,x] in R;
 existence proof ... end;
 uniqueness proof ... end;
 involutiveness;
end;

As an example of projectivity we give the functor for generating the absolute value of a
real number (ABSVALUE:def 1, [9]).

definition
 let x be real number;
 func abs x -> real number equals :Def1:
 x if 0 <= x
 otherwise -x;
 coherence;
 consistency;
 projectivity by REAL_1:66;
end;

Here, REAL_1:66 ([8]) refers to:

theorem :: REAL_1:66
 for x being real number holds x < 0 iff 0 < -x;

Due to some problems in implementation, the idempotence , involutiveness, and
projectivity properties are not available for redefined objects as yet.

3. Requirements

 The requirements directive, which is comparatively new in Mizar3 allows for special
processing of selected constructors. Unlike the properties described in Section 2, it
concerns the environ part of a Mizar article (cf. [10]). With the requirements directive,
some built-in concepts for selected constructors will be imported during the accommodation
stage of processing an article. In the MML database they are encoded in special files with
extension '.dre'. As yet, the special files in use are: HIDDEN, BOOLE, SUBSET, ARYTM,
and REAL. We describe how they assist the Mizar checker with the work of reasoning so
that the amount of justification an author must provide can be reduced.

3.1 requirements HIDDEN

 This directive is automatically included during accommodation of every article and
therefore does not need to be used explicitly. It identifies the objects defined in the
axiomatic file HIDDEN, i.e., the mode set followed by the ‘=' and 'in' predicates
(HIDDEN:def 1 - HIDDEN:def 3, [6]). Mode set is the most general Mizar mode and every
other mode widens to it. Thanks to the identification provided by requirements HIDDEN it
is used internally wherever the most basic Mizar type is needed, e.g., while generating
various correctness conditions. The fundamental equality predicate '=' is extensional
which means that two objects of the same kind (atomic formulae, types, functors, attributes)
are equal when their arguments are equal. This particular property is used frequently by
the Mizar checker. The '=' relation is also symmetric, reflexive, and transitive. Predicate
'in' plays an important role in the “unfolding” of sentences with the Fraenkel operator in
positive and negative contexts. This allows sentences of the form ex y being θ st x=y &
P[y] to be true whenever x in {y being θ : P[y]} is true and vice versa. Various features
of the 'in' predicate are considered in conjunction with other requirements (see Sections 3.2,
3.3).

3.2 requirements BOOLE

 When processing an article with requirements BOOLE, Mizar treats specially the
constructors provided for: the empty set ({}), attribute empty, set theoretical join (¥/), meet

(/¥), difference (¥), and symmetric difference (¥+¥) given in definitions XBOOLE_0:def
1-XBOOLE_0:def 6, [4]). It allows the following frequently used equations to be accepted
without any external justification: X ¥/ {} = X, X /¥ {} = {}, X ¥ {} = X, {} ¥ X = {}, and {} ¥+¥ X =
X. The empty set also gets additional properties: x is empty implies x = {}, and
similarly x in X implies X is non empty. Additional features concerning the empty set are
also described in the next section4.

3 Historically, the first requirements directive was ARYTM, introduced in 1995. The most recent is

BOOLE, implemented in 2001.
4 Recently, the Library Committee decided to provide a special article covering the proofs of requirements

which can be formulated as Mizar statements. The first article of that series is BOOLE, [5].

3.3 requirements SUBSET

 This requirements directive concerns the definition of inclusion (TARSKI:def 3, [11]),
the power set (ZFMISC_1:def 1, [3]) and also mode 'Element of ' (SUBSET_1:def 2) with a
following redefinition, [12]). With this directive X c= Y automatically yields X is Subset of
Y and vice versa. The property of the form x in X & X c= Y implies x in Y is incorporated
as well5. When BOOLE is also applied in the requirements directive, the formula x in X is
equivalent to x is Element of X & X is non empty.

3.4 requirements ARYTM

 Specification of requirements ARYTM concerns the definitions provided in the article
ARYTM ([7]): the set REAL (ARYTM:def 1), the redefinition of the set NAT as a Subset
of REAL, the real addition and multiplication operations (ARYTM:def 3, def 4) and the
natural ordering of real numbers (ARYTM:def 5). It provides the correspondence between
numerals and numbers defined in the MML. Without requirements ARYTM and SUBSET,
numerals are just names for (not fixed) sets. With them, numerals obtain internally the type
Element of NAT and appropriate values stored as rational numbers. These values are
also used to assign a proper order between numerals. It also makes basic addition and
multiplication operations on rational numbers accepted by the checker with no additional
justification. The numerators and denominators of Mizar numerals must not be greater
than 32767 (the maximum value for a 16-bit signed integer), although all internal
calculations are based on 32-bit integers. For example, the following equalities can be
easily calculated and therefore they are obvious: x + 0 = x, x * 0 = 0, x * 1 = x. More
processing capabilities for other arithmetic operations are introduced by the requirements
REAL directive (see Section 3.5).

3.5 requirements REAL

 This enables special processing of real expressions based on the constructors
REAL_1:def 1 - REAL_1:def 4, [8]. As with ARYTM , the Mizar checker uses the rational
value associated with real variables and a built-in GCD routine to evaluate new equalities.
In particular, the following equalities are directly calculated at this stage: x / 1 = x, x - 0 = x,
etc.

4 Conclusions

 The above considerations show that there are quite efficient mechanisms in Mizar
that provide some elements of computer algebra. The idea of implementing such features
was based on statistical observations showing the extensive use of special constructs.
The introduction of these techniques has a strong influence on the maintenance of the
MML. However, the distinction between the function of properties and requirements is not
always clear. In some cases, it is hard to decide which of these techniques is the best
implementation. Requirements are much more flexible, but on the other hand, properties
are a regular language construct and are not so system dependent. Every Mizar user can
decide whether or not to use properties for newly created definitions while a new
requirements directive yields a partial reimplementation of the system. Some of the
features currently implemented as requirements could be transformed into some kind of

5 Formerly, it was an extensively used MML theorem BOOLE:11.

properties. In particular, this would concern the properties of neutral elements as
described in Sections 3.4 and 3.5. There is still discussion on what would be the best
syntax for such a neutrality property. Another area of interest is the implementation of the
associativity and transitivity properties. However, this work still remains in the to-do list
due to some problems with finding an approach that will generate an efficient
implementation.

Acknowledgment: The authors would like to express their gratitude to Pauline N.
Kawamoto for her kind help in preparation of this paper.

References

[1] Grzegorz Bancerek, The fundamental properties of natural numbers, Journal of Formalized

Mathematics, http://mizar.org/JFM/Vol1/nat_1.html.
[2] Grzegorz Bancerek, The ordinal numbers, Journal of Formalized Mathematics,

http://mizar.org/JFM/Vol1/ordinal1.html.
[3] Czes law Bylinski, Some basic properties of sets, Journal of Formalized Mathematics,

http://mizar.org/JFM/Vol1/zfmisc_1.html.
[4] Library Committee, Boolean Properties of Sets – Definitions, Journal of Formalized

Mathematics, Encyclopedia of Mathematics in Mizar, 2002,
http://mizar.org/JFM/EMM/xboole_0.html.

[5] Library Committee, Boolean Properties of Sets – Requirements, Journal of Formalized
Mathematics, Encyclopedia of Mathematics in Mizar, 2002,
http://mizar.org/JFM/EMM/boole.html.

[6] Library Committee, Mizar built-in notions, Journal of Formalized Mathematics, Axiomatics,
1989, http://mizar.org/JFM/Axiomatics/hidden.html.

[7] Library Committee, Preliminaries to arithmetic, Journal of Formalized Mathematics, Addenda,
1995, http://mizar.org/JFM/Addenda/arytm.html.

[8] Krzysztof Hryniewiecki, Basic properties of real numbers, Journal of Formalized Mathematics,
http://mizar.org/JFM/Vol1/real_1.html.

[9] Jan Popiolek, Some properties of functions modul and signum, Journal of Formalized
Mathematics, http://mizar. org/JFM/Vol1/absvalue.html.

[10] Piotr Rudnicki and Andrzej Trybulec, On Equivalents of Well-Foundedness. An Experiment
in MIZAR, Journal of Automated Reasoning, 23, 1999, pp. 197-234.

[11] Andrzej Trybulec, Tarski Grothendieck set theory, Journal of Formalized Mathematics,
http://mizar.org/JFM/Axiomatics/tarski.html.

[12] Zinaida Trybulec, Properties of subsets, Journal of Formalized Mathematics,
http://mizar.org/JFM/Vol1/subset_1.html.

[13] Freek Wiedijk, Checker, available on WWW: http://www.cs.kun.nl/~freek/notes/by.ps.gz.
[14] Edmund Woronowicz, Relations and their basic properties , Journal of Formalized

Mathematics, http://mizar.org/JFM/Vol1/relat_1.html.

