Properties - Predicates
reflexivity
definition let X, Y be set; redefine pred X c= Y; reflexivity proof thus for x being set holds x c= x; end; end;irreflexivity
definition let X, Y be set; redefine pred X c= Y; irreflexivity proof thus for x being set holds not x c= x; end; end;symmetry
definition let X, Y be set; redefine pred X c= Y; symmetry proof thus for x, y being set st x c= y holds y c= x; end; end;asymmetry
definition let X, Y be set; redefine pred X c= Y; asymmetry proof thus for x, y being set st x c= y holds not y c= x; end; end;connectedness
definition let X, Y be set; redefine pred X c= Y; connectedness proof thus for x, y being set holds x c= y or y c= x; end; end;
Properties - Functors
commutativity
definition let X, Y be set; redefine func X + Y; commutativity proof thus for x, y being set holds x + y = y + x; end; end;