Properties - Predicates
reflexivity
definition let X, Y be set; pred X = Y means psi_1[X,Y]; reflexivity proof thus for A being set holds psi_1[A,A]; end; end;
definition let X, Y be set; pred X = Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; reflexivity proof let A be set; thus C1[A,A] implies phi_1[A,A]; thus C2[A,A] implies phi_2[A,A]; thus C3[A,A] implies phi_3[A,A]; thus not C1[A,A] & not C2[A,A] & not C3[A,A] implies phi_4[A,A]; end; end;irreflexivity
definition let X, Y be set; pred X = Y means psi_1[X,Y]; irreflexivity proof thus for A being set holds not psi_1[A,A]; end; end;
definition let X, Y be set; pred X = Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; irreflexivity proof let A be set; thus not ( (C1[A,A] implies phi_1[A,A]) & (C2[A,A] implies phi_2[A,A]) & (C3[A,A] implies phi_3[A,A]) & (not C1[A,A] & not C2[A,A] & not C3[A,A] implies phi_4[A,A]) ); end; end;symmetry
definition let X, Y be set; pred X = Y means psi_1[X,Y]; symmetry proof thus for A, B being set holds psi_1[A,B] implies psi_1[B,A]; end; end;
definition let X, Y be set; pred X = Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; symmetry proof let A, B be set; thus (C1[A,B] implies phi_1[A,B]) & (C2[A,B] implies phi_2[A,B]) & (C3[A,B] implies phi_3[A,B]) & (not C1[A,B] & not C2[A,B]& not C3[A,B] implies phi_4[A,B]) implies (C1[B,A] implies phi_1[B,A]) & (C2[B,A] implies phi_2[B,A]) & (C3[B,A] implies phi_3[B,A]) & (not C1[B,A] & not C2[B,A] & not C3[B,A] implies phi_4[B,A]); end; end;asymmetry
definition let X, Y be set; pred X = Y means psi_1[X,Y]; asymmetry proof thus for A, B being set holds psi_1[A,B] implies not psi_1[B,A]; end; end;
definition let X, Y be set; pred X = Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; asymmetry proof let A, B be set; thus (C1[A,B] implies phi_1[A,B]) & (C2[A,B] implies phi_2[A,B]) & (C3[A,B] implies phi_3[A,B]) & (not C1[A,B] & not C2[A,B]& not C3[A,B] implies phi_4[A,B]) implies not ( (C1[B,A] implies phi_1[B,A]) & (C2[B,A] implies phi_2[B,A]) & (C3[B,A] implies phi_3[B,A]) & (not C1[B,A] & not C2[B,A] & not C3[B,A] implies phi_4[B,A]) ); end; end;connectedness
definition let X, Y be set; pred X = Y means psi_1[X,Y]; connectedness proof thus for A, B being set holds psi_1[A,B] or psi_1[B,A]; end; end;
definition let X, Y be set; pred X c= Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; connectedness proof let A, B be set; thus not ( (C1[A,B] implies phi_1[A,B]) & (C2[A,B] implies phi_2[A,B]) & (C3[A,B] implies phi_3[A,B]) & (not C1[A,B] & not C2[A,B]& not C3[A,B] implies phi_4[A,B]) ) implies (C1[B,A] implies phi_1[B,A]) & (C2[B,A] implies phi_2[B,A]) & (C3[B,A] implies phi_3[B,A]) & (not C1[B,A] & not C2[B,A] & not C3[B,A] implies phi_4[B,A]); end; end;
Properties - Functors
involutiveness
involutiveness - means
definition let X be set; func +X -> set means psi_1[it,X]; existence; uniqueness; involutiveness proof thus for r, A being set st psi_1[r,A] holds psi_1[A,r]; end; end;
definition let X be set; func +X -> set means phi_1[it,X] if G1[X], phi_2[it,X] if G2[X], phi_3[it,X] if G3[X] otherwise phi_4[it,X]; existence; uniqueness; consistency; involutiveness proof let IT, x be set; thus (G1[x] implies phi_1[IT,x]) & (G2[x] implies phi_2[IT,x]) & (G3[x] implies phi_3[IT,x]) & (not G1[x] & not G2[x] & not G3[x] implies phi_4[IT,x]) implies (G1[IT] implies phi_1[x,IT]) & (G2[IT] implies phi_2[x,IT]) & (G3[IT] implies phi_3[x,IT]) & (not G1[IT] & not G2[IT] & not G3[IT] implies phi_4[x,IT]); end; end;involutiveness - equals
definition let X be set; func +X -> set equals tau_1(X); coherence; involutiveness proof thus for r, A being set st r = tau_1(A) holds A = tau_1(r); end; end;
definition let X be set; func +X -> set equals tau_1(X) if G1[X], tau_2(X) if G2[X], tau_3(X) if G3[X] otherwise tau_4(X); coherence; consistency; involutiveness proof let IT, x be set; thus (G1[x] implies IT = tau_1(x)) & (G2[x] implies IT = tau_2(x)) & (G3[x] implies IT = tau_3(x)) & (not G1[x] & not G2[x] & not G3[x] implies IT = tau_4(x)) implies (G1[IT] implies x = tau_1(IT)) & (G2[IT] implies x = tau_2(IT)) & (G3[IT] implies x = tau_3(IT)) & (not G1[IT] & not G2[IT] & not G3[IT] implies x = tau_4(IT)); end; end;projectivity
definition let X be set; func +X -> set means psi_1[it,X]; existence; uniqueness; projectivity proof thus for r, A being set st psi_1[r,A] holds psi_1[r,r]; end; end;
definition let X be set; func +X -> set means phi_1[it,X] if G1[X], phi_2[it,X] if G2[X], phi_3[it,X] if G3[X] otherwise phi_4[it,X]; existence; uniqueness; consistency; projectivity proof let IT, x be set; thus (G1[x] implies phi_1[IT,x]) & (G2[x] implies phi_2[IT,x]) & (G3[x] implies phi_3[IT,x]) & (not G1[x] & not G2[x] & not G3[x] implies phi_4[IT,x]) implies (G1[IT] implies phi_1[IT,IT]) & (G2[IT] implies phi_2[IT,IT]) & (G3[IT] implies phi_3[IT,IT]) & (not G1[IT] & not G2[IT] & not G3[IT] implies phi_4[IT,IT]); end; end;projectivity - equals
definition let X be set; func +X -> set equals tau_1(X); coherence; projectivity proof thus for r, A being set st r = tau_1(A) holds r = tau_1(r); end; end;
definition let X be set; func +X -> set equals tau_1(X) if G1[X], tau_2(X) if G2[X], tau_3(X) if G3[X] otherwise tau_4(X); coherence; consistency; projectivity proof let IT, x be set; thus (G1[x] implies IT = tau_1(x)) & (G2[x] implies IT = tau_2(x)) & (G3[x] implies IT = tau_3(x)) & (not G1[x] & not G2[x] & not G3[x] implies IT = tau_4(x)) implies (G1[IT] implies IT = tau_1(IT)) & (G2[IT] implies IT = tau_2(IT)) & (G3[IT] implies IT = tau_3(IT)) & (not G1[IT] & not G2[IT] & not G3[IT] implies IT = tau_4(IT)); end; end;commutativity
definition let X, Y be set; func X + Y -> set means psi_1[it,X,Y]; existence; uniqueness; commutativity proof thus for r, A, B being set holds psi_1[r,A,B] implies psi_1[r,B,A]; end; end;
definition let X, Y be set; func X + Y -> set means psi_1[it,X,Y] if C1[X,Y], psi_2[it,X,Y] if C2[X,Y], psi_3[it,X,Y] if C3[X,Y] otherwise psi_4[it,X,Y]; existence; uniqueness; consistency; commutativity proof let IT, x, y be set; thus (C1[x,y] implies psi_1[IT,x,y]) & (C2[x,y] implies psi_2[IT,x,y]) & (C3[x,y] implies psi_3[IT,x,y]) & (not C1[x,y] & not C2[x,y] & not C3[x,y] implies psi_4[IT,x,y]) implies (C1[y,x] implies psi_1[IT,y,x]) & (C2[y,x] implies psi_2[IT,y,x]) & (C3[y,x] implies psi_3[IT,y,x]) & (not C1[y,x] & not C2[y,x] & not C3[y,x] implies psi_4[IT,y,x]); end; end;commutativity - equals
definition let X, Y be set; func X + Y -> set equals tau_1(X,Y); coherence; commutativity proof thus for r, A, B being set st r = tau_1(A,B) holds r = tau_1(B,A); end; end;
definition let X, Y be set; func X + Y -> set equals tau_1(X,Y) if C1[X,Y], tau_2(X,Y) if C2[X,Y], tau_3(X,Y) if C3[X,Y] otherwise tau_4(X,Y); coherence; consistency; commutativity proof let IT, x, y be set; thus (C1[x,y] implies IT = tau_1(x,y)) & (C2[x,y] implies IT = tau_2(x,y)) & (C3[x,y] implies IT = tau_3(x,y)) & (not C1[x,y] & not C2[x,y] & not C3[x,y] implies IT = tau_4(x,y)) implies (C1[y,x] implies IT = tau_1(y,x)) & (C2[y,x] implies IT = tau_2(y,x)) & (C3[y,x] implies IT = tau_3(y,x)) & (not C1[y,x] & not C2[y,x] & not C3[y,x] implies IT = tau_4(y,x)); end; end;idempotence
definition let X, Y be set; func X + Y -> set means psi_1[it,X,Y]; existence; uniqueness; idempotence proof thus for A being set holds psi_1[A,A,A]; end; end;
definition let X, Y be set; func X + Y -> set means psi_1[it,X,Y] if C1[X,Y], psi_2[it,X,Y] if C2[X,Y], psi_3[it,X,Y] if C3[X,Y] otherwise psi_4[it,X,Y]; existence; uniqueness; consistency; idempotence proof let IT be set; thus C1[IT,IT] implies psi_1[IT,IT,IT]; thus C2[IT,IT] implies psi_2[IT,IT,IT]; thus C3[IT,IT] implies psi_3[IT,IT,IT]; thus not C1[IT,IT] & not C2[IT,IT] & not C3[IT,IT] implies psi_4[IT,IT,IT]; end; end;idempotence - equals
definition let X, Y be set; func X + Y -> set equals F(X,Y); coherence; idempotence proof thus for A being set holds A = F(A,A); end; end;
definition let X, Y be set; func X + Y -> set equals tau_1(X,Y) if C1[X,Y], tau_2(X,Y) if C2[X,Y], tau_3(X,Y) if C3[X,Y] otherwise tau_4(X,Y); coherence; consistency; idempotence proof let IT be set; thus C1[IT,IT] implies IT = tau_1(IT,IT); thus C2[IT,IT] implies IT = tau_2(IT,IT); thus C3[IT,IT] implies IT = tau_3(IT,IT); thus not C1[IT,IT] & not C2[IT,IT] & not C3[IT,IT] implies IT = tau_4(IT,IT); end; end;