Definitional Expansions -
Predicates
non permissive definitions
Simple:
definition let X, Y be set; pred X c= Y means phi_1[X,Y]; end; X c= Y proof thus phi_1[X,Y]; end;
definition let X, Y be set; pred X c= Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; connectedness; end; X c= Y proof per cases; case C1[X,Y]; thus phi_1[X,Y]; case C2[X,Y]; thus phi_2[X,Y]; case C3[X,Y]; thus phi_3[X,Y]; case not C1[X,Y] & not C2[X,Y] & not C3[X,Y]; thus phi_4[X,Y]; end;permissive definitions
definition let X, Y be set; assume alpha[X,Y]; pred X c= Y means phi_1[X,Y]; end; X c= Y proof thus alpha[X,Y]; thus phi_1[X,Y]; end;
definition let X, Y be set; assume alpha[X,Y]; pred X c= Y means phi_1[X,Y] if C1[X,Y], phi_2[X,Y] if C2[X,Y], phi_3[X,Y] if C3[X,Y] otherwise phi_4[X,Y]; consistency; end; X c= Y proof thus alpha[X,Y]; per cases; case C1[X,Y]; thus phi_1[X,Y]; case C2[X,Y]; thus phi_2[X,Y]; case C3[X,Y]; thus phi_3[X,Y]; case not C1[X,Y] & not C2[X,Y] & not C3[X,Y]; thus phi_4[X,Y]; end;
Definitional Expansions - Modes
non permissive definitions
Simple:
definition let X be set; mode Subset of X -> set means phi_1[it,X]; existence; end; Y is Subset of X proof thus phi_1[Y,X]; end;
definition let X be set; mode Subset of X -> set means phi_1[it,X] if G1[X], phi_2[it,X] if G2[X], phi_3[it,X] if G3[X] otherwise phi_4[it,X]; existence; consistency; end; Y is Subset of X proof per cases; case G1[X]; thus phi_1[Y,X]; case G2[X]; thus phi_2[Y,X]; case G3[X]; thus phi_3[Y,X]; case not G1[X] & not G2[X] & not G3[X]; thus phi_4[Y,X]; end;permissive definitions
definition let X be set; assume beta[X]; mode Subset of X -> set means phi_1[it,X]; existence; end; Y is Subset of X proof thus beta[X]; thus phi_1[Y,X]; end;
definition let X be set; assume beta[X]; mode Subset of X -> set means phi_1[it,X] if G1[X], phi_2[it,X] if G2[X], phi_3[it,X] if G3[X] otherwise phi_4[it,X]; existence; consistency; end; Y is Subset of X proof thus beta[X]; per cases; case G1[X]; thus phi_1[Y,X]; case G2[X]; thus phi_2[Y,X]; case G3[X]; thus phi_3[Y,X]; case not G1[X] & not G2[X] & not G3[X]; thus phi_4[Y,X]; end;
Definitional Expansions - Attributes
non permissive definitions
Simple:
definition let X be set; attr X is empty means phi_1[X]; end; X is empty proof thus phi_1[X]; end;
definition let X be set; attr X is empty means phi_1[X] if C1[X], phi_2[X] if C2[X], phi_3[X] if C3[X] otherwise phi_4[X]; consistency; end; X is empty proof per cases; case C1[X]; thus phi_1[X]; case C2[X]; thus phi_2[X]; case C3[X]; thus phi_3[X]; case not C1[X] & not C2[X] & not C3[X]; thus phi_4[X]; end;permissive definitions
definition let X be set; assume beta[X]; attr X is empty means phi_1[X]; end; X is empty proof thus beta[X]; thus phi_1[X]; end;
definition let X be set; assume beta[X]; attr X is empty means phi_1[X] if C1[X], phi_2[X] if C2[X], phi_3[X] if C3[X] otherwise phi_4[X]; consistency; end; X is empty proof thus beta[X]; per cases; case C1[X]; thus phi_1[X]; case C2[X]; thus phi_2[X]; case C3[X]; thus phi_3[X]; case not C1[X] & not C2[X] & not C3[X]; thus phi_4[X]; end;