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Preface 

Mizar is one of the most famous proof checkers. It is historically very old and also 

thought to be the most accurate for genuine mathematical language. There seem to 

be several types of proof checkers in the world; however, those were made by 

graduate students for their graduation thesis and many of them were abandoned 

once the students graduated. Because of this situation, Mizar's library is increasing 

with the help of the Mizar group lead by Prof. Andrzej Trybulec as well as many 

other researchers and graduate students. 

    Since Prof. Trybulec is a mathematician, he knows about what kinds of proof 

checkers are needed. Therefore, because these were made under such experiences, 

their functions are thought to be substantial. This proof checker was non-existent in 

the old days; therefore, mathematics were thought to be very rigid. Many people 

thought that dependence in machines were not necessary. However, corresponding 

with the development of computers, this rigidity became questionable. As a result, a 

question rose as to how mathematics should be written. Every proof checker has 

different ideas. My creation, THEAX, is one of them; however, it was totally 

independent from Mizar even though it was created about the same time or a little 

later than Mizar. Therefore, the way of thinking is entirely different. 

    Here, we would like to explain Mizar's way of thinking, the actual environment of 

movement, and the story about what kind of thinking made formalized mathematics. 
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Concerning the Revised Edition 

Today's Mizar is beginning to be used increasingly in a large field of applications 

and it came to have a WWW homepage on the Internet. With support from the users 

and for the sake of its processing ability, Mizar has managed to renew its version 

frequently. We hope to help people who are learning Mizar by summarizing those 

improvements as well as we can.  

 

Concerning the 4th Edition 

The content of this note is based upon Mizar version 6.1.12.  



 

 

 

 

 

Chapter 1 

A Summary of Mizar 

Mizar is a general term of a project that formalized the use of computers by the 

Mizar society lead by Prof. Andrzej Trybulec of Warsaw University in Poland. The 

Mizar project is carried out by describing mathematical demonstrations by the 

Mizar language. Mizar was created to describe mathematics by using computers and 

checking them with a Mizar proof checker on a IBM-PC for Mizar library 

registration. The purpose of this project is to create a system for checking 

mathematical thesis. In Mizar, text that have descriptions of mathematical 

demonstrations are called article. When we write new articles, we can refer to 

articles that have been previously checked and registered in the Mizar library. When 

that article is registered in the Mizar library, other articles will be able to refer to it. 

 

    The articles are divided into an environ and main sections. In the environ section, 

we describe the necessary environmental set up for that article and in the main 

section, the demonstrations themselves are described. 

 

    The articles are described by the Mizar language. The Mizar language is based on 

the description method of general demonstrations; however, in Mizar, there is a 

specific method for writing. This will be explained later in more detail.  

 

    We will explain the Mizar language, Mizar proof checker, and the Mizar project.  
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Chapter 2 

An Outline of the Mizar Language 

The Mizar language is used for describing mathematical demonstrations by using 

computers. Because we normally follow a method of writing demonstrations when 

we write a Mizar article, we have to write with the Mizar language. From now, we 

abbreviate Mizar language to Mizar. 

    In Mizar, we use general ASCII code. Letters that are usually used are numbers, 

English alphabet, symbols. Also, for mathematical symbols, there are ones that use 

similar things or combine general ASCII characters . 

    Also, in Mizar, we have to keep in mind that capital and lower-case letters of the 

English alphabet are distinguished. Therefore, when we write MS-DOS names of 

articles and file names into an article, we always have to use capital letters. In this 

case, we write within 8 capital English letters, numbers, and, _, '.  

    As we use such words as 'therefore', 'theorem', 'definition', and 'end of 

demonstration' when writing mathematical demonstrations; in Mizar, we also use 

corresponding words to describe. These words become reserved words. As a Mizar 

system, the logic of &, or, not, concept of =, and predicate logic of All, Exist are 

prepared from the beginning. Moreover, we press on with our demonstrations by 

phrasing definitions and theorems of functor, predicate, and others that are 

registered in the Mizar library; however, their basic is written in HIDDEN.ABS. The 

materials that are written here is accepted as axioms without demonstrations. We 

structured the Mizar library by phrasing those and leading different theorems. 

When users write new articles, they describe by phrasing logic that are already 

prepared in the system from the beginning or the numerous theorems that are 
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created based upon things such as TARSKI. 

    When users define functor function and others, they first register those into the 

vocabulary file and then define them in an article. In this case, we cannot define a 

functor that has exactly the same name with a reserved word. The method for 

defining specifically is explained in chapter 6. Also, please look at the table of Mizar 

reserved words in the appendix. 

    We will now discuss the logical formula and predicate logic that are prepared in 

the Mizar system. We can use the basic logical formula such as &, or, not, implies, 

and iff. For example, the following can be written. 

 

  A & B 

  A = B & B = C impliesA = C 

  A & ( B or C ) iff A & B or A & C 

 

& is used for the logical formula. For between the formulas, we use and. Also, 

implies and iff indicate 'then' and if only if 'equivalence'.  

    For the predicate logic, we can use all symbols and exist symbols like the 

following. 

 

  for x st f[x] = b holds g[x] = c; 

 

For the writing method of the normal predicate logic, this indicates the following 

formula. 

 

                         ( )( ( ) ( ) )x f x b x c⇒∀ = =g  

 

This means for an optional x, if ( )f x b= , then ( )x c=g . Therefore, it means that for 

all x, ( )x c=g  that satisfies ( )f x b=  will be formed. 

    Further, f[x], g[x] are the predicates that include x and it does not mean that 

this kind of writing method is prepared in the system.  

    Next, if we write the following,  
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   ex x st f[x] =b & g[x] =c ; 

 

it means the formula below.  

 

  (∃x)(f (x) =b and g (x) =c ) 

 

It means that x that becomes g (x) = c (when f(x) =b) exists. Also, we can mix all 

and existent symbols. 

 

   for x ex y st f[x] = a & h [x] = i [y] 

 

The above formula indicates the following: 

 

               &( )( )( ( ) ( ) ( ))f a h i∀ ∀ = =x y x x y  

 

    We are allowed to use parentheses as an option. Even when parentheses are not 

needed, we can use them for better understanding. 

    In addition, there are the MS-DOS version and the Linux version in the Mizar 

system. Furthermore, although it is essentially the Linux version, there is a Mizar 

system which can be used for freedom from a Web page. 
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Chapter 3 

The Structure of the Mizar Article 

3.1 The Whole Structure 

Next, we will explain the structure of an article. An article consists of two parts, the 

environ and main sections. The environ section starts with environ and ends with a 

semicolon. The main section starts with begin and ends with a semicolon. However, 

we can also divide a main section into some parts by inserting several "begin"s. 

This is equivalent to dividing into a paragraph in a paper. If the name of a 

paragraph is written to the .BIB file which we explain later, when an article is 

automatically changed into the form of the general mathematics paper later, the 

name of a paragraph will be written in a begin position. 

  environ  

        The environ section 

                                ; 

  begin  

       The main section 1 

                               ; 

  begin 

       The main section 2 

 - - - - - - 

  begin 

       The main section n 

                               ; 
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3.2 The Environ Section 

We will first explain the environ section. In the environ section, the necessary 

environmental set up for an article is conducted. Specifically, we write definitions, 

theorems, and vocabularies that the article phrases, and declare file names of the 

article that have them. 

    The environ section is constructed of the following items. 

 

   environ 

           vocabulary    · · · ; 

           notations     · · · ; 

           constructors  · · · ; 

           definitions   · · · ; 

           theorems      · · · ; 

           schemes       · · · ; 

           requirements  · · · ; 

 

    We will explain each item in the environ section. 

 

3.2.1 Vocabulary Section 

In the vocabulary section, we write the names of the vocabulary files (.VOC file) that 

are registered and used in articles with capital letters. We omit the extension unit of 

a file name, and when writing many vocabulary files, we write by using commas (for 

vocabularies that are registered in HIDDEN.VOC, we can use them without writing 

them in the vocabulary section). At the end of sentences, we write semicolons. Also, 

we write the same way with places other than the vocabulary section. 

    The vocabulary file that has registered vocabularies that are used in an article 

registered in the Mizar library is summed up in a special file. 

   To look for the vocabulary file that has registered vocabularies that we want to use, 

we type the following at the command prompt of MS-DOS, or the prompt of Linux. 
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  FINDVOC [vocabulary] 

 

Also, when we want to indicate vocabularies that are registered in the vocabulary 

file, we type the following. 

 

  LISTVOC [vocabulary] 

 

3.2.2 Notation Section and Constructors Section 

In case of making a new theory, we sometimes want to use an old concept. For 

example, suppose that we want to use the concept of Function or Function-like. 

At this time, since these terms are registered into a vocabulary file called FUNC.VOC, 

we add FUNC to the vocabulary section. Moreover, since these terms are defined in 

FUNCT_1 (MIZ or ABS file), we add FUNCT-1 to the notation section. And in many 

cases, we add FUNCT_1 also to the constructors section. 

 

Example; 

 

       environ 

          vocabulary FUNC; 

          notation FUNCT_1; 

          constructors FUNCT_1; 

        begin 

        reserve X for Function; 

        theorem X is Function-like; 

 

 

    About the difference between the notation section and the constructors section, 

there was only one item called the signature section in the version of old MIZAR and 

both were unified. From there, relations such as the hierarchic structure between 

concepts and the definition of each concept were expanded by the memory of a 
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computer. However, since the former had many overlapping parts, it was separated 

for saving memory. The former was inserted into the constructors section. Therefore, 

when there was a file with more inclusive structure, we could omit the file of smaller 

structure from the constructors section, and it came to be able to perform saving of 

memory. For example, even if as follows instead of the previous example, an error 

does not come out. 

 

 

  environ 

   vocabulary FUNC; 

   notation FUNCT_1; 

   constructors TOPREAL1; 

 

  begin 

  reserve X for Function; 

  theorem X is Function-like; 

 

 

Therefore, when TOPREAL1 is contained in the constructors section beforehand, we 

don't have to insert FUNCT_1 there. 

    At first, we can insert a file name into both the notation section and the 

constructors section in order, after completion, if a more basic file is deleted from the 

constructor section, we can simplify the environ section more, and we can also save 

memory. 

 

    In the notation section, when we want to use symbols written in the files, we write 

the file names of articles that have those symbols defined. In the definition 

section (part of definition) of an article, those symbols' meanings are added (things 

like what kind of argument they have and how many, or what kind of modes they 

themselves become). 

 

    For example, ∩(intersection) is defined in both of the articles BOOLE and 
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PRE_TOPC (the latter is redefined). However, the method of using that symbol is 

different. 

< article BOOLE > < article PRE_TOPC > 

  

definition 

  let X,Y; 

  func X /\ Y -> set means 

  x c= it iff x in X & x in Y; 

end; 

 

definition 

  let TP, P, Q; 

  redefine 

  func P /\ Q -> Subset of TP; 

end; 

 

   /\(same as ∩) in BOOLE means the set itself, and it has a set on the both sides 

as an argument. On the other hand, it in PRE_TOPC makes itself a Subset of 

TP(topological space), and it has Subsets of TP on both sides as an argument. 

    From now on, when we want to write articles using /\, if we want to use that as a 

set, we write BOOLE in the notation section, and if we want it to be a Subset of TP, 

we have to write PRE_TOPC. 

 

3.2.3 Requirements Section 

We put only a file called ARYTM on the requirements section at present. ARYTM is a 

file for using arithmetic operation comparatively freely. 

 

    For example, although the following formula becomes truth without giving a 

reason, this is the favor of ARYTM (however, a reason is required for 132-24 = 108) . 

 

          132 + 24 = 156; 

 

 

    For example, the following is a no error. Multiplication and inequality are also 

judged automatically. Let's keep in mind that ARYTM is contained also in notation. 
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         environ 

           vocabulary REAL_1; 

           notation ARYTM,REAL_1; 

           constructors REAL_1; 

           requirements ARYTM; 

         begin 

         theorem 10+4=14 & 10+5=15 & 10+6=16 & 10+7=17; 

         theorem 10+10=20 & 1000+1000=2000 & 10000+10000=20000; 

         theorem 44 * 2=88; 

         theorem 2 * 1=2 & 3 * 2=6 & 4 * 5=20; 

         theorem 45≦50; 

         theorem 45 く 50; 

 

3.2.4 Definitions Section 

In the definitions section, when we want definition extension and expansion possible, 

we write file names of articles that have their definitions. For instance, when 

demonstrating X c= Y, we just need to demonstrate ∀a(a in X implies a in 

Y); however, this definition is defined in the article TARSKI as below.  

 

   pred X c= Y means x in X implies x in Y; 

 

Therefore, if we write TARSKI in the definitions section, when we demonstrate X c= 

Y, it means that we demonstrated X c= Y if we can say that a in X implies a 

in Y.  

 

Example, 

 

  theorem X c=X \/ Y 
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   proof let x be set; 

    assume  x in X; 

   hence y in X \/ Y by BOOLE:def 2; 

   end: 

 

3.2.5 Theorems Section 

In the theorems section, we write the file names of articles with theoremsand 

definitions for citing articles. 

 

3.2.6 Schemes Section 

In the schemes section, we write the file names of articles that have phrasing 

schemes (demonstration form) written. 

 

 

3.3 The Main Section  
3.3.1 Sentences  

Next, we will explain the main section. The main section basically consists of 

sentences and their line up. Sentences have the following structure. 

 

  L1: A=B     by ∙∙∙ ; 

  L2: B=C     by ∙∙∙ ; 

   L3: A=C       by L1,L2; 

     Label Formula    Citation Section 

 

    We will attach only the necessary sentences (sentences that will be cited later) to 

labels. Also, we call by ... a citation section, and write labels of sentences that are 

necessary to lead that formula. In the citation section, by ... , we can mix labels in 

an article and cited labels from other articles. For example, labels in that article are 
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untouched and when citing from other articles, we write a name of an article : a 

number as shown below. 

 

  ······ by L1,L2,TARSKI:5; 

 

 

Also, in case of citing a definition, we write a name of an article : def a number. 

    Moreover, for proof ~ end, instead of the citation section, we can add a 

demonstration with some sentences like the following. 

 

  L3:  A=C 

  proof 

    ··· 

    ··· 

   hence thesis; 

  end; 

 

 

In this case, all of these are considered as one sentence. At this point, end in proof 

~ end needs thus or hence just before it. It means that this can be said about the 

first formula that has a demonstration attached currently by this sentence's formula. 

Concerning the difference between thus and hence: hence takes the form of then 

+ thus. 

    Even though then has appeared here for the first time, it is used when a formula 

stated before is cited. To explain with an example, let us assume the following. 

 

  L1:A=B by ··· ; 

  L2:B=C by ··· ; 

 

At this point, instead of writing the following, because L2 formula is a formula 

stated before, we will take L2 away from the citation section of L3 sentence. 
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  L3:A=C by L1,L2; 

 

 

    By using then, we can write the following. 

 

  then L3:A=C by L1; 

 

 

The reason why we use then is because we want to minimize the usage of labels. 

Normally with demonstrations, we often cite formulas stated before. Also, when 

citing formulas from the one stated before, we will need many labels if we attach 

labels and state by label. However, by using then here, we will not need to use 

labels when citing formulas from the one stated before. Therefore, we can reduce the 

number of labels. Thus, when we want to cite formulas from the one stated before, 

even though it is not wrong to write by using labels, it is better to use then. 

    In addition, when checking with a checker (explained in Chapter 8.1.1) for 

improving an article used for registering in the Mizar library, everything will return 

an error if we write with the method of using the above labels even though the 

demonstrations are right. As long as that error exists, it will not be possible to 

register in the Mizar library. Therefore, it should not be written. Where then can be 

used, it should be used instead of labels. Because of this, hence should be used for 

citing formulas just before the end of proof ~ end. 

 

3.3.2 Theorem 

Generally, the main section is structured centering theorems and definitions. 

    When writing a definition with an article, it should be written in the following 

way. 

 

  theorem    a formula from the theorem 

   proof 
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    ··· 

    ··· 

   end; 

 

 

The difference between the method of writing the above and the below is that by 

writing a theorem, that formula is pulled out as an abstract file. 

 

  Formula 

   proof 

    ··· 

    ··· 

   end; 

 

 

An abstract file is a file that has a theorem, definition, and others that are 

pulled out of an article (.ABS file). When we register an article in the Mizar library, 

we change an article into an abstract file. The reason for this is because articles that 

contain everything such as demonstrations (.MIZ file) become too big, and it is hard 

to find anything for phrasing. Therefore, when we write formulas that we desire to 

be cited, we put in a theorem. 

    When we write definitions with an article, we use a definition. Also, when 

some new words or functions are to be defined, this definition is used to define 

them. We will explain definitions later in more detail. 

    Further, a theorem or definition cannot be written in proof ~ end. We can only 

use them in the top step of a nest. In short, we cannot write as follows. 

 

  theorem ... 

   proof 

    theorem ... 

     proof 

    ··· 
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    ··· 

    end; 

  end; 

 

    As explained, a Mizar article is largely divided into the environ section and the 

main section. The main section is usually structured with some definitions and 

theorems. 

    Also, in a Mizar article, after :: is a comment. 
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Chapter 4 

Method for Demonstration 

4.1 Basic Method for Demonstration 

We will explain the demonstration method. For a demonstration method, as we have 

explained before, we will first write a formula that needs to be demonstrated and 

then we will write the demonstration in between proof and end.  

 

        A formula that is needs to be demonstrated 

  proof 

   ··· 

  ··· 

  thus (hence) ...; 

 end; 

 

The end of a demonstration will always finish with thus... or hence....  

    Let us demonstrate a proposition "p implies q". 

 

  p implies q 

   proof 

    assume p;      p is assumed 

    ··· 

    ··· 

   thus q;        q could be indicated 

  end; 
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    First, we will initially write a formula "p implies q" that needs to be 

demonstrated, and write proof , end;. We do not need a semicolon after proof; 

however, there has to be one after end. If it is p, we need to demonstrate that it is q; 

however, p is also one logical formula. We will first write assume p and then p is 

assumed, and if we can indicate q, the demonstration is finished with thus q. 

    Next, if we want to demonstrate "b=c implies a=b" after a=c is assumed, the 

following can be stated. With assume a=c, we will place label A:.  

 

 

  A:a=c; 

   b=c implies a=b 

   proof 

    assume B:b=c 

    hence thesis by A; 

   end; 

 

 

    With assume ..., we hypothesize ... . In short, we indicate that it is a 

hypothesis section. Also, we should indicate that for hence ..., the last formula of 

this demonstration could be derived from a formula just before hence and the 

reasoning section of a hence formula. A thesis means that a formula should be 

indicated. 

    Let's explain thus and hence a little in more detail. 

    Although thus and hence are used in proof, the formula which should be proved 

becomes easy every time hence and thus appear and a proved part is removed from 

the formula connected by &. For example, the following is the proof of three formulas 

connected by and. 

 

  theorem 3-1=2 & 5-2=3 & 6-3=3 

 proof 2+1=3; 

  hence 3-1=2 by REAL_2:17; 
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  3+2=5; 

  hence 5-2=3 by REAL_2:17; 

  3+3=6; 

  hence thesis by REAL_2:17; 

 end; 

 

 

Since 3-1=2 are proved by the first hence, we become the formula which 5-2=3 & 

6-3=3 should prove. Since 5-2=3 are proved by the next hence, 6-3=3 become the 

formula which should finally be proved. It means that all the remaining parts (6-

3=3) are first proved by hence thesis. 

 

    In addition, hence combines then and thus, as mentioned above. 

 

 

  A1: A=B; 

 A2: B=C; 

 thus A=C by A1,A2; 

 

For example, we can write the above as the following. 

 

 A1: A=B; 

 B=C; 

 hence A=C by A1; 

 

 

4.2 Irrational Method  

When demonstrating the same thing, there is also this method of doing it. When p 

implies q needs to be demonstrated, we still assume the condition with assume p 

in the proof. Then we will deny the conclusion by stating assume not q. 
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  p implies q 

   proof 

    assume p; 

    assume not q; 

    ······ 

    thus contradiction; 

   end: 

 

 

And then we will lead from this and state thus contradiction. It means that a  

irrational method was used. If we assume that it is neither p nor q, it means  

that an inconsistency occurred. 

 

 

4.3 Dividing the Demonstrations 

There are also many different formations for demonstrations. These are called 

skeletons of demonstrations. 

    For instance, let us assume that we want to demonstrate p & q & r. At this 

point, the following demonstrations can also be done. (This paragraph becomes the 

repeat of 4.1.) 

 

 

  p & q & r 

   proof 

   ······ 

   thus p; 

   ······ 

   thus q; 

   ······ 

   thus r; 
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   ······ 

  end; 

 

    First, let us assume that p could be demonstrated and it becomes thus p. Also, 

continuing with the demonstration, it becomes thus q, when we demonstrate even 

further, it becomes thus r. In this case, the Mizar system looks for thus .... . 

For this, three thus appear so that of a proposition p & q & r that should be 

demonstrated first, we will recognize the fact that p could be demonstrated. Also, we 

will recognize that the second one could be demonstrated with thus q. Finally, we 

will be aware that everything could be demonstrated with thus r. The end can also 

be stated as thus theses. In this case, system and p,q are already demonstrated and 

only r is left; therefore, we will recognize that r is the thesis. In this way, we will 

be aware that thus thesis is thus r. It is fine to write either one of them. 

    In addition, when demonstrating p & q & r, we can either demonstrate p first 

then q & r next, or p & q first and r later. We can demonstrate by dividing freely.  

 

 

4.4 Demonstration of the Equivalence 

Concerning the demonstrating method for p iff q (p <=> q), p implies q is 

demonstrated first, then q implies p is demonstrated. The system automatically 

interprets p iff q as p implies q & q implies p. Therefore, if we state that p 

implies q, the first half is considered to be demonstrated. The rest is the other 

half's demonstration. As a result, with assume q, it becomes thus p and it is 

judged that p iff q is said. 

 

 

  p iff q 

   proof 

   assume p; 

    ··· 



 26

   thus q; p => q could be said 

   assume q; 

    ··· 

   thus p; q => p can be said and p <=> q 

  end: 

 

 

4.5 Method for Using Now  

For a skeleton demonstration, now is sometimes used to demonstrate not p. Now is 

used as follows: 

 

  now assume p; 

   ····· 

   ····· 

   thus contradiction; 

 end; 

 

    With now ~ end, now is considered as one sentence (logical formula). This now ~ 

end is the same with not p. Or, with assume p, it becomes a logical formula p that 

implies a contradiction. 

 

4.5.1 Caution About End 

As a caution about end, in Mizar, end is used in many ways such as proof ~ end 

and now ~ end. These have been nesting. When there are many ends, we get 

confused on which end is which. Therefore, because end is needed when now is 

written, we should write end as soon as writing now. The rest is just filling this in 

with an editor. In the same way, we should write end as soon as a proof is written. 

We will not make any mistakes if we just remember that end will not be written 

automatically. 
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4.6 All Symbols 

We will now discuss about a predicate proposition. Let us demonstrate for x 

holds p[x] & q[x]. Further, p[x] means a predicate that includes x and it does 

not mean that brackets are permitted. 

 
  for x holds P[x] & Q[x] 

   proof 

    let x; 

     ······ 

     ······ 

    thus P[x]: 

     ······ 

    thus Q[x]; (thesis) 

   end: 

 

    The word let exists as an opposite of for from all symbols. P is demonstrated by 

thus P[x] with leaving let x as it is. Further, we will demonstrate Q with Q[x]. 

    If it does not get confused, this letter can be changed. For example, the letter can 

be changed to y. 

 

4.6.1 When There Are Two Variables 

When there are two variables like the following we write two variables. 

 

  for x,y st P[x,y] holds Q[x,y] 

   proof 

    let x,y; 

    assume P[x,y]; 

     ······ 
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     ······ 

    thus Q[x,y]; (thesis) 

   end; 

 

    Directly, it means that we demonstrated ( )( )( ( , ) ( , ))x P x x⇒∀ ∀y y Q y . 

"assume ..... " becomes one logical formula. 

 

4.6.2 Method for Writing With such that  

In addition, there is another way of writing as follow: 

 

  for x,y st P[x,y] holds Q[x,y] 

   proof 

    let xs,y such that L:P[x,y]; 

     ······ 

    ······ 

    ······ 

    thus Q[x,y]; 

   end; 

 

Further, labels are usually entered after such that; however, in this example (this 

case L) they are not necessary. The first line is st and the third line is such that. 

 

4.6.3 Division of Sentences 

There is a skeleton such as this: 

 

  for x,y st P[x,y] & Q[x.y] holds R[x,y] 

   proof 

    let x,y such that L1:P[x,y] and L2:Q[x.y]; 

     ······ 
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     ······ 

    thus R[x,y]; 

   end: 

 

 

    We can also rewrite this as the following. We need to pay careful attention to the 

difference of & and and. 

The third line 

 

    let x,y such that L1:P[x,y] and L2:Q[x,y]; 

 

is 

 

    let x,y such that L:P[x,y] & Q[x,y]; 

 

 

We can also write like the above. Methods for writing the front and back are 

basically the same. In the method for writing the front, and is used for dividing into 

two sentences to build other labels. This means that one sentence A & B was 

divided into sentences A and B. On the other hand, the method for writing the back 

is persistently one sentence and it is connected by a logical calculation unit. As 

stated before, we can divide one sentence into two by using and, or, we can connect 

two sentences into one by using &. 

 

4.6.4 Dividing Sentences With Assume 

For the difference in writing a method after such that, a similar thing occurs in 

the case of assume. For example, adding & S[x,y] to an assume example, we will 

assume that the following occurred. 

 

  for x,y st P[x,y] & S[x,y] holds Q[x,y] 



 30

   proof 

    let x,y; 

    assume P[x,y] & S[x,y]; 

     ······ 

    ······ 

    thus Q[x,y]; 

   end; 

 

 

    At this point, 

 

    assume P[x,y] & S[x,y]; 

 

 

can be written as below. 

 

    assume that L1:P[x,y] and L2:S[x,y]; 

 

 

Only with the way of writing the above formula, we can write labels on both P[x,y] 

and S[x,y]. In this example, they are L1 and L2 labels. 

 

4.6.5 Caution Following that 

When using that, we cannot use then after that. It is because we think there may 

be more than two sentences after such that. When there are more than two 

sentences, the sentence just before them is not clear. 

 

  assume that A and B: 

  then C; 
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Therefore, the above method of writing is not possible. We have to use labels and 

write in the following way. 

 

 

  assume that L1:A and L2:B; 

  C by L1,L2; 

 

 

Or, when only B is used, we can only write as below: 

 

  C by L2; 

 

 

Also, when there is only one citation, then cannot be used. We have to write by 

using L2 instead of then. Therefore, when that is stated, labels have to be there or 

this sentence can not be used. In short, this will not be able to be cited later. Thus, 

we have to think that the labels will always follow that. 

    When that is not used, then can be used. Therefore, the first way of writing, 

assume P[x,y] & Q[x,y], in this case, the following can be used. 

 

  assume P[x,y] & Q[x,y]; 

  then ...... 

 

 

Thus, there is only one sentence without that. For assume, then is used.  
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4.7 Existing Symbols 

There are more different kinds of skeletons. In the case of demonstrating logical 

predicate formulas with existing symbols ex x st P[x], we use take. 

    By using take, we write the following: 

 

  ex x st P[x] 

   proof 

    ------ 

    L:P[a]; 

    take a: 

    thus thesis by L; 

   end; 

 

 

When demonstrating the existence of x that satisfies P[x], let us assume that 

P[a] is demonstrated. In this case, it means that for take a, x is exists and if we 

take a, it is demonstrated by L. 

 

4.7.1 Method for Using Consider 

Consider is an opposite word for take. 

 

  (ex x st P[x]) implies for y st Q[y] holds R[y] 

   proof 

    assume ex x st P[x]; 

    then consider a such that L:P[a] 

    ······ 

   ······ 

    let y such that Q[y]; 

   ······ 

   ······ 
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    thus R[y]; 

   end; 

 

 

First, we will assume. For assume ex x st P[x];, we use consider and state 

then consider a such that L:P[a]. This case also needs labels because such 

that exists. We will leave it like this and to state y st next, we will state let y 

such that Q[y] to state thus Q[y]. 

    Consider means to give some sort of proper nouns to an existing x that satisfies 

P[x]. Therefore, we intend to have an existing x as a topic for discussion. Thus, it 

does not have to be x, it can be a. 

    As an existing a, it can be used as a proper noun here. In other words, it is used 

as if it is assumed to exist. Therefore, consider is an opposite of take. Take is used 

for replacing something as a proper noun or bring in existing symbols.  

 

4.7.2 Method for Using Given 

There is another skeleton that is slightly different. 

 

  (ex x st P[x]) implies for y st Q[y] holds R[y] 

   proof 

    given x such that P[x]; 

    ······ 

   ······ 

    let y 

    assume Q[y]; 

   ······ 

   ······ 

    thus R[y]; 

   end; 

 



 34

 

    Here, given in the second sentence: "given x such that P[x];", works as both 

assume and consider.  

 

Please remember as follows. It is much easier. 

 

  given = assume + consider 

 

 

4.8 Dividing into Cases 

Next, we will discuss about demonstrating by dividing into cases. Let us assume 

that we want to demonstrate a proposition "A and B" and it can be done if we divide 

these into cases. For instance, we want to demonstrate by dividing into cases such as 

when x=1, x=2, and when x takes some other value. This means that with x=1,2, it 

becomes a peculiar point. At this point, it takes the structure of the following 

demonstrations. 

 

 

  L:( x=1 or x=2 or not ( x=1 & x=2 )) 

   now per cases by L; 

    case LA:x=1; 

     ······ 

    thus A and B; 

 

    case LB:x=2; 

    ······ 

    thus A and B; 

 

     case LC:not (x=1 & x=2); 

    ······ 

    thus A and B; 
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   end; 

 

 

We will demonstrate by supposing each case in "now per cases ~ end". We will 

demonstrate from "case x=1" to the beginning of "thus A and B" when x=1. In 

the same way, we will also demonstrate when x=2 and other cases. The sentences 

from now to end are considered as the whole one "A and B". For example, if we have 

then after "now ~ end", "then" receives the whole "now ~ end". Even though it is 

divided into each case with "case", the conclusion of each case is handed over to the 

end. Therefore, when all of this is cited, the fact that it was divided with "case" is 

forgotten and the fact that only the conclusions are the same is checked. Thus, it 

means that this is one formula. 

    In addition, since a formula like L is logically clear, there may not be "by L" of 

"now per cases by L". 

 

4.8.1 Premise for Dividing into Cases 

We have some warnings for you here. This case is used as a premise when dividing a 

formula x=1 or x=2 or not (x=1 & x=2) ---(1) into cases. It means that this 

division of cases covers all cases. When dividing into cases in this way, we have to 

state that we are stating this about all cases. 

    In addition, like the upper example, when formation of formula (1) is clear, "by" 

behind "now per cases" is unnecessary. 

 

4.8.2 Labels for Dividing Into Cases  

Unquestionably, when demonstrating by dividing into cases, the labels of each case 

demonstration is only valid during the demonstration of that particular case. If we 

try to use that label for the demonstration of another rather than that specific 

demonstration case, an error saying that there is no label will appear. 
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4.8.3 Warning About Labels 

Further, we will give a warning about labels. In Mizar, it is acceptable to use the 

same label; however, the ones just before are prioritized. 

 

For example: 

 

 

  L1:......; 

     ......  

  L1:......; 

     ...... by L1; Here, L1 of just before is cited. 

 

 

    When we want to demonstrate something with this case, if we state by L1, the 

sentence of L1 below it will be cited. 

    This is easily mistaken and when we put labels L1, L2, L3, ...... , we tend to forget 

until the labels were used. Also, let us assume that we put L3 and when we state by 

L3, even if we think that it is L3 and we can certainly infer from L3, there will be 

an error. This kind of mistake is made often at first. When this happens, there is one 

same label that is hiding if examined carefully. Sometimes, there is another one in a 

different place.  

 

 

4.9 Method for Using @proof  

When we write a long article in Mizar, we end up checking constantly with a Mizar 

checker. It takes time to check a long article; therefore, by skipping the check of 

definitions that have already been demonstrated, we can save some time when 

checking in Mizar. 

    To omit checking definitions and others, we replace proof with @proof. By doing 
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this, the Mizar checker will not check that definition. 

    Of course, when articles are completed, all the @proof need to be removed. 

 

 

4.10 Introduction of New Variable(Set, reconsider) 

When we introduce a new variable, we write as follows. 

 

 

  set r1 = r + 2; 

 

 

Therefor we can introduce the new variable r1 as (r + 2). The type will turn into 

real number type, if r is real number type. In the bloc after this sentence, we can 

use a variable r1 freely (if it escapes from the bloc by end, r1 will become null and 

void). When we want to introduce the new variable from which a type differs, we use 

reconsider. we write as follows. 

 

 

  reconsider n1 = r + 2 as Nat by A2; 

 

 

In this case, it is needed to attach a reason that r+2 becomes a natural number type. 

It is same in Set that the new variable is effective only in the bloc. We can also 

introduce two or more variables simultaneously like the following. 

 

 

  reconsider n1 = r + 2, n2 =r + 3 as Nat; 
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4.11 About Take 

Although it becomes the repeat of Section 4.7, we explain in more detail about take. 

 

 

  ex r bring Real st 1<r-1 

     -------(1) 

 

When proving a formula (1), we write it as follows. 

 

 

  theorem ex r being Real 1<r-1 

   proof 1+1<3;then A1:1+1-1<3-1 by REAL_1:59; 

    take 3; 

    thus 1 く 3-1 by REAL_2:17,A1; 

   end: 

 

 

We have to keep in mind that the last formula is as follows instead of the form of (1). 

 

    thus 1<3-1 

 

It is because there is "take 3" in the middle of proof, therefore the part of existing 

symboles are removed, we should prove only a naked part. 

 

    If we explain it in a little more detail, it is as below. 
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To prove (∃x)(∃y)(f(x,y)), 

proof ------ ------ a formula which should be proved in this stage is 
  (∃x)(∃y)(f(x,y))

 take a ------ a formula which should be proved in this stage is 
  (∃y)(f(a,y))

 ------ ------  

 take b ------ a formula which should be proved in this stage is 
  (f(a,b))

 ------ ------  

 hence f(a,b);  

end;   

Therefore, we can do the following proof. 

 

 

  theorem ex r,s being Real st 1<r-1 

    proof take 3; 

    take 1;1<3; 

    hence thesis by REAL_2:17; 

  end; 

 

 

Further, if we prove the part about the above-mentioned f(a,b) even if we don't 

use take in many cases, finally the checker will look for a and b. For example, we 

can also do it as follows. 

 

 

  theorem ex r being Real st 1<r-1 

    proof 1+1<3;then 1+1-1<3-1 by REAL_1:59; then 

     1<3-1 by REAL_2:17; 

     hence thesis; 

    end; 
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4.12 Hereby 

Hereby used in proof is the same as thus + now. 

For example, at the following the proposition of (for x st x in A holds x in 

B) is first proved and it will be removed from the proposition group that should be 

proved. 

 

  theorem TT1: (for x st x in A holds x in B) & A=A \/ A 

  proof 

   hereby let x; assume X in A; 

   hence x in B; 

   end; 

   thus A=A \/ A by BOOLE:35; 

  end; 

 

Thus, the following part is the same as (for -----) above. 

 

  now let x; 

   assume X in A; 

   ------ 

   hence x in B; 

  end; 

 

"This is proved first" means that we can attach thus before now as follows. 

 

  thus now --- 

  ---- 

  ---- 

  end; 
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This become as follows. 

 

  hereby ---- 

  ----- 

  ----- 

  end; 

 

There are the following ways of using hereby as a application course (This does not 

need to prove and is an obvious theorem.). 

 

  theorem AA2: x=y iff not y<>x 

  proof 

   hereby assume x=y; 

    hence not y<>x; 

   end: 

   assume not y<>x; 

   hence x=y; 

  end: 

 

The proposition (x=y iff not y<>x) is the same as a proposition called (x=y 

implies not y<>x)&(not y<>x implies x=y). The former (-----) part is 

proved and removed by hereby, and we are proving the latter (-----) part in the 

second half. 

    As the further application course, there is the following. 

 

  theorem BB2: A=B 

   proof hereby let x be Any; assume A1: x in A; 

    thus x in B by TT1.A1; 

   end: 

   let x; 

   assume X in B; 

   hence x in in A by TT1; 
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   end; 

 

This is regarded as (A=B) being the same as (A c=B)&(B c=A), because the 

definition section of an environ section has BOOLE. Furthermore, because the 

definintion section has TARSKI, it is considered that this is the same as the following. 

 

  (for x st x in A holds x in B) & 

  (for x st x in B holds x in A) 

 

If it becomes this form, it will turn out that the above-mentioned example can 

describe by hereby. Actually, When we describe that two sets are equallike this last 

example, hereby is often used. 

 

 

 

 

 

 
 



 

 

 

 

 

Chapter 5 

About Mode 

5.1 Mode 

Next, we will explain mode. In Mizar, there is a concept of mode. Mode is a type of 

Pascal (a kind of computer language) and there is set for a general mode. Other than 

this, there are Nat, Real, and others as representative modes. Users can also define 

a mode. Also, as shown in the following figure, mode has a structure level such as 

Nat in Real and Real in set. Functor and others are subordinated to mode. This is 

similar to a programming language. And it is considered that Any and set are the 

same. 

Nat 
Integer 

...... 
Real 

 
 
 Function 
 
 
 Top Space 
 
 

Set 

...... 

......  

Fig. 5.1 a level of mode 
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    For example, let us think about the following example. Here, let us assume that + 

is only defined pertaining to Real. 

 

  reserve A,B for Real; 

     C,D for Function; 

  L:C=A+B: 

    ...... 

    D=A by...; 

    then C=D+B by L; 

 

 

    Let us assume that C=A+B and D=A are demonstrated when A,B is Real and C is 

Function. At this point, if we substitute D=A to a formula C=A+B and make C=D+B by 

L, it will be an error. It is because D and B have different modes. A calculation unit + 

is only defined to Real and it is not defined to Function. Therefore, an error of 

unknown functor will appear.  

    This error can be taken care of by extending the mode of variable D. It will be fine 

if we can state that D is Function as well as Real.  

 

 

5.2 Structure Level  

As we mentioned in the begining, mode has the following structure level. Set is the 

widest mode, for example, there is Real below it and Nat below Real. In other 

words, Nat becomes set, Real becomes set, and Nat becomes Real. This way of 

thinking is similar to an Object Oriented Language. The same symbols are used 

from the top. 
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5.3 Mode change 

For mode change, we use the word reconsider to conduct a mode change. (cf.4.10). 

 

  reconsider U=D as Nat by ...; 

 

 

    As shown above, by using reconsider, it is possible to change D of Real's mode 

to U of Nat's mode.  

 

 

5.4 Declaration of Mode During a Demonstration 

Many times, we declare mode variables during demonstrations. We will again enter 

a skeleton of a demonstration; for example, in the demonstration of P ⊆ Q: 

 

  P c= Q 

   proof 

        let x be set; 

    assume x in P; 

    ...... 

    thus x in Q; 

   end; 

 

 

At this point, it is stated as let x be set;.  

 

       be mode name 

 

With the above, we can declare mode during a demonstration. Of course, we can also 

state reserve x for set before hand. 
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5.4.1 Warning About c= 

Also, as a caution, we use c= for ⊆ in Mizar. However, when using c= , we need to 

leave a space in front and back.  

 

5.4.2 Example of Actually Using a Definition 

Furthermore, here, we demonstrate ( )( )x x x⇒∀ ∈ ∈P Q  and it does not mean that 

we demonstrated ⊆P Q . There is a mathematical distance between these two. 

However, the system understands the fact that both of them are equivalent by 

writing TARSKI in the definitions of the environ section as explained in the third 

chapter. It means that this is defined as a predicate in the abstract file of TARSKI. 

    TARSKI is structured from the definition which is the basis of the Mizar library; 

therefore, when writing articles, we write TARSKI at the definitions of the 

environ section. 

 

 

 

 

 



 

 

 

 

 

Chapter 6 

Definition 

6.1 Definition 

In this chapter, we will explain predicates, functor, and mode definitions. 

 

 

6.2 Method for Writing the Vocabulary File 

In Mizar, when we newly define functors, we need to register those functors into a 

vocabulary file. This is also true when defining predicates and mode. In the 

vocabulary file (.VOC file), we must always start writing from the beginning of the 

line and write what the name is as the first word. For example, if it is HIDDEN.VOC:  

 

HIDDEN.VOC 
Mset 
MReal 
MNat 
K[: 
L:] 
O+ 32 
O. 
R<> 
R< 
R> 
(parts extracted) 
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As shown above, it displays what it is in one word at the beginning of the line.  

Symbols Things that are defined 
M Mode 
O Functor 
R Predicate 
K Left functor bracket 
L Right functor bracket 
G Structure 
U Selector 
V Attribute 

    We will write names after one word in the beginning of the line without any space. 

In addition, for functor, we will leave a space and write in the order of precedence. 

The order of priority consists of integral numbers from 1 to 255 and bigger the 

number, higher the priority order. If we omit, it will be 64. 

    Thus, after registering to the vocabulary file, we will define with an article. 

Further, in case of newly registering a vocabulary, we need to undertake the 

following procedure to make sure that it is not already registered.  

 

  CHECKVOC [vocabulary] 

 

 

6.3 Predicate Definition 

We will first explain the predicate definition. For instance, considering k and l as 

natural numbers, let us assume that we want to define k as a factor of l. This is a 

predicate. Let us assume that we also want to define such that k is a factor of l. 

This has a form similar to a binomial calculation unit; however, it has two variables 

of k and l. The following shows how to write the definition for this case. 

 

  definition 

  let k,l be Nat; 

  pred k is_factor_of l 
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  means 

  :FACTOR: 

  ex t being Nat st l=k*t 

 

 

The Nat in let k,l be Nat indicates that the mode of k and l is a natural 

number. :FACTOR: is a label and this is used for citation later. The labels in the 

definition are put between the colons. When the abstract file is made by pulling it 

out of here, it will be changed to def with numbers. Labels of normal theorems will 

be changed to simple numbers. Also, * in k*t symbolizes multiplication.  

    As a result, a predicate of k is_factor_of l means ex t being Nat st 

l=k*t.  

 

 

6.4 Functor Definition 

We will explain the fuctor definition next. For example, let us think about a 2 

variable fuctor. Let us assume that we want to make a new set Z from the set 

(set)X,Y. We will explain what to do at this point. 

 

   X /\ Y → Z 

  set  set  set 

 

 

  definition 

   let X , Y be set; 

   func X /\ Y -> set 

   means 

   :N: x in it iff 

      x in X & x in Y; 

   existence ......; 
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   uniqueness 

   proof 

   end; 

  end; 

 

 

    This case also allows for it to be written in the operation form instead of the 

definition of a function like ( , )f X Y Z= . Let us assume that we want to define such 

a symbol as  Z = X ∩Y. To make a new set Z from sets X and Y is truly this functor. 

With let X, Y be set;, we have sets X, Y ready. In addition, func X /\ Y -> 

set indicates X /\ Y as a set. The next line after means is the meaning of that 

functor. We will then write the meaning of the functor by placing a label like before. 

In this meaning, X /\ Y is indicated as it. 

    In addition, in the demonstration section (contents of the meaning), we have to 

demonstrate the existence and uniqueness. In other words, we have to express 

its existence and uniqueness (the existence is only one). 

    For the demonstration for uniqueness, we only have to state the following. 

If we take A1 and A2 as it: 

 

      (x in A1 ⇔ x in X & x in Y) 

  and (x in A2 ⇔ x in X & x in Y) 

   ⇒  A1 = A2 

 

If we write this, it will be as below: 

 

  uniqueness 

   proof 

    let A1,A2 be set such that 

     A1: x in A1 iff x in X & x in Y 

     and 

     A2: x in A2 iff x in X & x in Y; 

     now let y; 
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      y in A1 iff y in X & y in Y by A1; 

      hence y in A1 iff y in A2 by A2; 

     end: 

   hence A1=A2 by TARSKI:2; 

 

In short, when we bring in the two sets A1 and A2 that satisfy this condition, by 

demonstrating the equality of these two sets, the uniqueness is in fact 

demonstrated. 

    In this demonstration of uniqueness, because it is such that in the third line, 

one can see that after it the two sentences label A1 and label A2 are connected with 

and. It is stated as now let y. Let us assume that this y is reserved as set. In 

addition, by label A1 we can state as y in A1 iff y in X & y in Y, and 

therefore, by label A2, y in A1 iff y in A2 can be stated. In addition, it means 

that enough necessary conditions for A1=A2 are demonstrated by TARSKI:2 stating 

that y in A1 and y in A2 are equally corresponding with the optional y; therefore, 

A1=A2 are demonstrated.  

    We also have to demonstrate the existence in the same way; however, we have 

to state that such an it exists. That is, let us demonstrate for the following. 

 

  ex A being set st for x 

  holds x in A1 iff x in X & x in Y 

 

 

6.5 Method for Using Equals 

If we use equals, such as 2( )x x=Q , we can define the function by substitution 

briefly. For example, if we descrive as follows, we can define the function 

Quard(x)=x*x. 

 

   definition let x be Real; 

    func Quard(x) equals :A1: 
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    x*x 

    correctness; 

   end; 

 

 

6.6 Mode Definition 

At last, we will explain the mode definition. 

    Let us assume that we will newly define a mode nlt2_elements.  

 

  definition 

   mode nlt2_elements -> set means 

   :DF2: 

   ex a,b st a in it & b in it & a <> b; 

    existence 

    proof 

     take B = NAT; 

           thus ex a,b st a in B & b in B & a <> b 

       proof 

        take a= 1, b = 2; 

        thus a in B & b in B & a <> b; 

       end; 

     end; 

    end; 

 

 

In the demonstration section of the mode definition, only the demonstration of 

existence will be needed. Also, when the mode is defined, its natural property can 

be defined by (attribute) or (cluster). For instance: 

 

  definition 
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  attr nlt2_elements -> set means :DF2: 

  ex a,b st a in it & b in it & a <> b; 

  end; 

  definition 

  cluster nlt2_elements set; 

  existence 

  proof 

   take B=NAT; 

   ex a,b st a in B & b in B & a <> b 

   proof 

    take a=1, b=2; 

    thus a in B & b in B & a <> b; 

    end; 

   hence thesis by DF2; 

   end; 

  end; 

 

Generally, attribute takes the following predicate form:  

 

    A is non-empty 

 

Or, the adjective form. 

 

    non-empty set 

 

In this case, non-empty is the same with non empty. 

Also, in the definition blocks of attribute, we can define symbols that possess the 

same meaning (synonym) and the opposite meaning(antonym).  

 

Example (this is not actual) 

 

  definition 
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   attr empty -&gt set means :A1: 

    not ex x st x∈it; 

    ... 

   synonym (void); 

    antonym (non-empty); 

  end; 

 

When we want to use by attaching multiple attributes to one mode, that cluster 

needs to be defined. If this is not done, the following inconsistent combination will 

appear. 

 

  finite infinite set 

  empty non-empty set 

 

As it has been stated before, new functor, mode, attribute, cluster (cf. §6.7), and 

others can be defined in Mizar; however, each demonstration needs to include the 

following elements. 

 Existence Uniqueness 
Mode ○  
Pred   
Functor ○ ○ 
Attr   
Cluster ○ ○ 

 

 

6.7 Cluster Definition 

We can make a type like new mode by giving some attribute to a certain mode. For 

example, suppose that there is mode called Real. Let us assume that the attribute of 

positive is defined to this mode. At this time, we can also make mode called "positive 

Real" (this is called cluster). 

    Although it seems we are enough to make a new mode called positive_Real, 

convenience of cluster is as follows:  
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  x is positive_Real; then 

  x is positive; 

 

We can not derive the above, but we can derive the following without giving reason.  

 

  x is positive Real; then 

  x is positive; 

 

 

That is, the Mizar checker remembers firmly that cluster called "positive Real" 

is positive Real. If once new cluster is defined, we can use the cluster freely in 

other articles by writing the first filename such as clusters of the environ section. 

The example which defines cluster will be shown below. In the definition, let's keep 

in mind that it is necessary to prove only existence. 

In addition, we will assume that the next is written in VOC file beforehand. 

 

  Vpositive 

 

 

 

  environ 

   vocabulary TEST8; 

   notation ARYTM,REAL_1; 

   constructors ARYTM; 

   theorems REAL_1,AXIOMS; 

   requirements ARYTM; 

  begin 

   definition let x be Real; 

    attr x is positive means :A1: 0<x; 

  end; 

  definition 

   cluster positive Real 
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   existence 

   proof take 1; thus O<1; end; 

  end; 

  theorem for x,y begin positive Real 

   holds x+y is positive Real 

  proof let x,y is positive Real; 

   B1:0 く x by A1; then 0 く y by A1; then 

   x<x+y by REAL_1:69; then 

   0<x+y by B1, AXIOMS:22; 

  hence x+y is positive Real by A1; 

  end: 

 

 

6.8 Introduction of structure 

Let (X,a) be a binominal algebra. In such a case (X is a set and a is a function), we 

write only the following (without useing definition etc.). 

 

  struct Binalg(# base->set,op2->Function #); 

 

For the new terminology Binalg, base, and op2, we write the following in a VOC 

file (be careful of adding the classification Symbol of G, U). 

 

  GBinalg 

  Ubase 

  Uop2 

 

    Then, the following theorem is formed without giving reason. 

 

  theorem for X being set, a being Function 

  holds (the base of Binalg(# X,a #))=X; 
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This corresponds to the proposition "the base of a binominal algebra (X, a) is X". 

Take care of adding the to base. 
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Chapter 7 

Practice Environment 

Here, we explain the Practice Environment of installing and using the system of 

Mizar in our personal computer. 

    As a Practice Environment, although there are the MS-DOS version which we use 

at the MS-DOS prompt (command prompt) of Windows9x/2000/NT, and the Linux 

version which we use at Linux (kernel 2.0.x, 2.2.x, and 2.4.x) of the intel version, in 

any case, a certain editor is required. Since an extension letters is used in Mizar, 

please prepare an editor which can display an extension letters. In the MS-DOS 

version, we recommend an editor which is attached as a standard. And since we will 

refer to two or more library files, it is convenient to use an editor that we can open 

two or more editor windows. 

 

 

7.1 Installation 

Each file of MS-DOS version and the Linux version for Practice Environment 

installation of Mizar is about 14 M bytes archive file. Therefore, it is easy to get 

them using a browser or the ftp command from Homepage and the ftp server of 

Mizar. For example, if it is from Homepege, please get them from the following URL 

etc. 
 

http://markun.cs.shinshu-u.ac.jp/kiso/projects2/proofchecker/mizar/index-j.html 
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    Please refer to Appendix C about getting from an anonymous ftp server. 

    Mizar is used by installing the Mizar archive file to the hard disk.  

 

7.1.1 MS-DOS Version 

We can use Mizar of the MS-DOS version, installing to the hard disk drive of the AT 

compatible under the Windows 9x/2000/NT operating system. Besides, the free area 

of about 75 M bytes of hard disk drive is required. Here, we explain the stream 

which a Practice Environment builds from the archive file (for example, mizar-

6.1.11_3.33.722-win32.exe) of Mizar to PC of Windows 98 whose hard disk 

drive is C drive.  

    We create a directory in a space of the hard disk drive (for example, C:\work etc.), 

and save the archive file of Mizar there. 

    We start an MS-DOS prompt from the start menu of Windows, and turn it 

English mode by the us command. And we change a current directory into the 

directory to which we saved the archive file of Mizar previously. 

    Since the archive file of Mizar is a self-extracting file, we input the file name of 

the acquired file as follows, and uncompresses it. 

 

  C:\work>mizar-6.1.11_3.33.722-win32 

 

    A batch file for installation called INSTALL.BAT is in the uncompressed files, we 

install Mizar by using this as follows. 

 

  C:\work>INSTALL .\ C:\MIZAR 

 

    Although C:\MIZAR is the directory where the system of Mizar is installed, we 

can also specify other drives and other directory names. The commands of Mizar are 

installed by this batch file, further, directories are created automatically and MIZ 

files, abstract files made until now are installed there. 
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    After the installment is finished, C:\MIZAR is need to be added to the path. In 

addition, when it is specified except C:\MIZAR as the directory of the installation 

place of Mizar, we set the directory of the installation place of Mizar to the 

environment variable MIZFILES of a system. 

 

    To be more precise, when the installation place of Mizar is set to C:\MIZAR, we 

add the following one line to autoexec.bat, and reboot the PC. 

 

  PATH C:\MIZAR 

 

    By the way, when PATH already has been set to an autoexec.bat file like the 

following example, 

 

  PATH C:\WINDOWS\COMMAND 

 

we use the semicolon and add the directory of Mizar to PATH as follows. 

 

  PATH C:\WINDOWS\COMMAND;C:\MIZAR 

 

    Moreover, when the installation place of Mizar is set to D:\MIZAR of the hard disk 

drive of D drive for example, we add the following two lines to autoexec.bat and 

reboot the PC. 

 

  PATH D:\MIZAR 

  set MIZFILES=D:\MIZAR 

 

    Besides, since these are explained in detail in the file called readme.txt made by 

uncompressing the archive file of Mizar, please refer to if needed. 
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7.1.2 Linux Version 

We can use Mizar of the Linux version, installing to the hard disk drive of an AT 

compatible with the Pentium processor of Intel where Linux is installed (Mizar 

system runs on Linux with kernels 2.0.x, 2.2.x and 2.4.x). The free area of about 80 

M bytes of hard disk drive is required. Here, we explain the stream which a Practice 

Environment builds from the archive file (for example, mizar-6.1.11_3.33.722-

linux.tar) of Mizar to PC.  

    We create a directory (for example "work" on its own home directory) in a space of 

the hard disk drive, and save the archive file of Mizar there. 

    And we change a current directory into the directory to which we saved the 

archive file of Mizar previously. 

    Then, we extract the archive file of Mizar by the tar command. If # is a prompt, 

we enter the following. 

 

  # tar xvf mizar-6.1.12_3.35.723-linux.tar 

 

    A shell script file for installation called install is in the extracted files, we 

install Mizar by using this as follows. 

 

  # ./install 

 

    By default, the executable file of Mizar is installed in /usr/local/bin, the 

shared file of Mizar is tinstalled in /usr/local/share/mizar and the document 

file of Mizar is installed in /usr/local/doc/mizar. Therefore, it is necessary to do 

this work by the user who has a permission of writing to these directories when 

installing. 

    We can also install them to directories other than a default directory. In this case, 

we start the shell script for installation first, and specify a directory interactively on 

a screen during installation. 

    After the installment is finished, please check that the directories of the 

executable files of Mizar which have been installed are included in PATH of a system. 
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If it is a default case, we can check that /usr/local/bin is contained in PATH by 

entering as follows. 

 

  # echo $PATH 

 

    When not contained, after adding the following one line to .bashrc (in the case of 

bash), 

 

  export PATH=/usr/local/bin 

 

we enter the following command and add /usr/local/bin to a command search 

path. 

 

  # source ~/.bashrc 

 

    Besides, when the executable file of Mizar is installed in directories other than 

default, it goes without saying that this directory is set to PATH. 

    Next, we set the directory of the installation place of shared file of Mizar to an 

environment variable MIZFILES. 

    To be more precise, when the installation place of Mizar is set to 

/usr/local/share/mizar,after adding the following one line to .bashrc (in the 

case of bash), 

 

  export MIZFILES=/usr/local/share/mizar 

 

we enter the following command. 

 

  # source ~/.bashrc 

 

    Besides, since these are explained in detail in the file called README made by 

extracting the archive file of Mizar, please refer to if needed. 
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7.2 Preparation for Using Mizar 

To use Mizar, we first need to make our own directory. 

    Here, we explaine an example according to a MS-DOS version. In C:\, a directory 

named USER needs to be created and our own directory is made under it. For 

instance, because my name is Nakamura, I need to make a directory named 

nakamura under the USER directory. Below it, three directories of TEXT，DICT，and 

PREL are created.  

 

    To explain each directory: TEXT directory is for placing Mizar articles (.MIZ file) 

that the users write. In addition, an intermediate file that outputs the Mizar system 

is also placed here. DICT is an abbreviation of DICTionary and the vocabulary file 

(.VOC file) that the user has written is placed. New words are written under this 

vocabulary file. PREL is an abbreviation of PRELiminaries, and this is used to store 

the necessary files to view articles that are not registered in the Mizar library.  

 

C:\USER\NAKAMURA\TEXT 
\DICT 
\PREL 

 

    Usually, when using Mizar, we assume that a current directory is one's own 

directory under C:\USER. For example, when using the command of Mizar called 

accom which we explain by 7.4.1, we enter it as follows. 

 

 

  C:\USER\NAKAMURA\ACCOM TEXT\EXAMPLE1.MIZ 
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7.3 Mizar System 

In case of the MS-DOS version, the Mizar system is made in Mizar C:\MIZAR; 

however, ABSTR is an important directory among these. ABSTR is an abbreviation of 

ABSTRact and this directory holds the abstract files that have been created up to 

this point in time. BOOLE.ABS and TARSKI.ABS are examples of these. When an 

article is written, files in here are read often. 

    There are the following as other directories. 

    In PREL, files that are used for viewing an article registered in the Mizar library 

are placed. 

    In MML, MIZ files (with detailed proof) of a library are installed in MML. 

    In DOC, readme file of this Mizar system, document files that are used for 

registering to the library, and other Mizar-related documents are installed. 

    Mizar's various commands are placed directly in C:\MIZAR. 

    Similarly, in case of the Linux version, as written also by the explanation of the 

installation procedure of 7.2, various commands of Mizar are installed in 

/usr/local/bin. In addition, the directories of ABSTR, PREL, or MML are made 

under /usr/local/share/mizar, DOC is made under /usr/local/doc/mizar, 

and files are installed there. 

 

 

7.4 The Mizar Usage 
7.4.1 Accommodate 

For instance, let us assume that an article named EXAMPLE1.MIZ was created. This 

file is set on a directory called TEXT under one's own directories created by 7.2. First, 

we accommodate it (accommodate means to gather files and adjust them). In order 

to accommodate, at the command prompt, we set EXAMPLE1.MIZ as an argument 

and enter a command called ACCOM as follows. 

 

  ACCOM TEXT\EXAMPLE1.MIZ 
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    An argument must be taken as a file name (here EXAMPLE1.MIZ) including a path. 

This accommodation reads the environ section in and gets ready for the article's 

proof by making some files of the referred article's theorems, definitions, and others 

that are needed by an article. Sometimes, errors may appear at this point when, for 

example, names of an abstract file are written incorrectly in the environ section.  

    Accommodation does not need to be carried out every time; however, when the 

environ section is changed, it needs to be accommodated again. 

 

7.4.2 Mizar Checker 

When the above is done, the Mizar checker is carried out next. To do this, the 

following form is needed. 
 

  VERIFIER TEXT\EXAMPLEl.MIZ  

 

    When this is done, a table will appear on the screen and checks an article in the 

order of Parser, Analyzer, and Checker and indicates the number of checked lines 

and errors. If only the checked number of rows is displayed after the check and there 

is no error, it means that it passed the checker of Mizar. 

 

7.4.3 When There Is An Error 

When there is an error, the error number is entered to an article in the form of 

comment by using a command called ERRFLAG. We use this command as follows. 

 

  ERRFLAG TEXT\EXAMPLE1.MIZ 

 

Every command can omit an extension .MIZ.  

To read an error message, another file (MIZAR.MSG) needs to be viewed with an 

editor. 
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7.4.4 Useful Command 

There is a useful batch command named MIZF.BAT and when the following form 

takes place, it checks to see if there is any need for accommodation. When there is a 

need, it carries out the accommodation first and then the Mizar checker is executed. 

 

  MIZF TEXT\EXAMPLE1.MIZ 

 

When there are more errors, it enters the error numbers in the form of a comment to 

an article. At the end of an article, risen error numbers and messages are entered 

into a comparison table (entered comments are erased at the time when MIZF 

command is executed next). 
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Chapter 8 

Registering to the Library 

We would like to explain the Mizar library registration process. Let us assume that 

we wrote a Mizar article and it passed the checker. However, we cannot register it to 

the Mizar library because it only passed the checker. Before registering, we have a 

few other things to do. 

 

 

8.1 Improvement of an Article 
8.1.1 Improvement of the Main Section 

First, we need to improve an article. To do this, we need the following commands. 

 

  RELPREM Checks unnecessary citations. 

  CHKLAB  Checks unnecessary labels. 

  INACC  Checks unnecessary lines. 

  TRIVDEMO Checks trivial demonstrations. 

  RELINFER Checks unnecessary lines. 

 

    Such commands are provided. All these commands are used in the following way. 

 

  RELPREM TEXT\EXAMPLE1.MIZ 

 

    If we execute the following after carrying out each command, the error number 
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will be written into an article. 

 

  ERRFLAG TEXT\EXAMPLE1.MIZ 

 

    RELPREM checks to see if irrelevant matters in reasoning are cited after "by". It 

also checks for the same thing for "then". If certain things are not needed for 

reasoning, an error will appear.  

    CHKLAB later on checks for the labels that are not used after labeling. 

    INACC later checks for the lines that are not used. If an error occurs from this 

checker and lines are erased, there may be excess citations and labels due to this; 

therefore, it needs to be checked again from the beginning. 

    TRIVDEMO checks to see if there are trivial proofs. Trivial matters need to be 

removed. When being as follows, 

 

  A=B 

  proof 

  To:A=C by T1; 

     C=D by T2; 

  hence thosis by To; 

  end; 

 

it meens that we can simplify them like the following. T1 and T2 are the labels used 

between the above-mentioned proof and end (external label of proof --- end). 

 

  A=B by T1,T2; 

 

 

Explanation of RELINFER; 

RELINFER checks to see if two lines are summarize to one. For example, When an 

error (*605) is displayed as follows, 

 

  A=B + C by T1;then 
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  D=E + (B + C) by T2; 

    *605 

 

it meens that we can manage with the following one line.  

 

  D=E + (B + C) by T1,T2; 

 

 

When the error of the number *604 is as follows, 

 

  S1: A=B + C by T1; 

    ---------- 

    ---------- 

  D=E+ (B + C) by S1,T2 

    *604 

 

it meens that we can write the following.  

 

  S1: A=B + C by T1; 

    ---------- 

    ---------- 

  D=E+(B + C) by T1.T2; 

 

    If the line of a label S1 is not used for others, we can delete it, but if used, we 

cannot delete and cannot reduce a line. We can find out whether it is used or not, 

using CHKLAB once again, but when it is used, *604 may be disregarded because of 

troublesome to restore it. Anyway, it is necessary to use a series of check programs 

repeatedly. As a result, the number of lines may be decreased no less than several 10 

percent. Because derivation of a line to a line is powerful, it is natural for Mizar 

checker, but it may become an oversimplification which cannot be understood when 

man reads. Therefore, it is not need to necessarily turn the number of lines even into 

the minimum, and we may stop moderately. 
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8.1.2 Checking the Environ Section 

In addition, we have to check the environ section. To do this, there are the following 

commands. 

 

 

  IRRVOC  Checks unnecessary vocabulary. 

  IRRTHS  Checks unnecessary theorems.  

 

 

    The method of using these is the same with the checking commands of the main 

section. For NOTATION and CONSTRUSTORS, there is no good way of checking. 

Therefore, use NOTATION and CONSTRUSTORS sparingly from the beginning and 

start with 0 and gradually include what is needed. However, if we accommodate 

after deleting an unnecessary file by IRRVOC, an error will appear in the NOTATION 

section, so we will be able to remove it. 

 

 

8.2 Preparation for Registration 

After checking for all the improvements in an article, MIZ2ABS is exectured next. 

When MIZ2ABS is executed, itis accommodated first. And then, the file for referring 

that article is made from one's article (.MIZ file), and only Theorem and Definition 

are picked out to make the abstract file (.ABS file). In addition, when MIZ2PREL is 

executed to make that article referable, it copies the necessary file into one's 

directory. 

 

 

      Command used after revision 

 

  MIZ2ABS Makes abstract files. 
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  MIZ2PREL Copies files so that the article can be seen. 

 

 

    In addition, when the article is cited, names of authors, their unit, their address, 

and references are written in normal sentences and made into a .BIB file. Please 

refer to a sample called example.bib in DOC directory.  

    The article is created with the process above and is sent to the Mizar Society on a 

floppy disk (for example). If this article is good enough, it will be accepted and an 

acceptance notice will be sent. When it is accepted, it will be automatically 

translated into English and will be published in the Formalized Mathematics 

magazine.  

    Besides, it us also sent to mml@mizar.uwb.edu.pl by using the attachment 

function of e-mail etc. Please refer to the method of submitting by e-mail in 

Appendix C.3. 

 

Note:  

1) When we want to quote a certain paper in SUMMERY, we write /cite {A1} in a 

sentence. We write the paper name into the space of REFERENCES independently, 

and give a code called A1. 

2) Although PRESENTER in it means the major personalities of the referee of a 

pape, this space will be left blank. 

 

 



 74

 



 

 

 

 

 

Chapter 9 

Useful tools 

9.1 To find VOC files containing a terminology (findvoc) 

In order to introduce new terminology, we make a new VOC file and register into 

it (cf. 6.2). In this case, when we want to know in which VOC file the already 

registered terminology is contained, we input as follows. 

 

  C:\>findvoc Real 

 

    By using this command, the list of VOC files with which all the terminology 

containing a character string called "Real" belongs is displayed. 

    If only this command is inputted as follows, how to use findvoc (help) will be 

displayed. 

 

  findvoc 

 

    For example, it is displaied how we should use the command like the following 

examples; 

 

 

When we want to search for letter "|", we input as follows. 

 

  findvoc \b 
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And when we want to search for letter " <", we input as follows. 

 

  findvoc \l 

 

 

9.2 To check the contents of the VOC file 

Although all VOC files actually existed in the old version of MIZAR, they are unified 

and a user cannot see them individually now. So when we want to know the contents 

of a VOC file called INDEX1.VOC, it will be displayed by inputting as follows. 

 

  LISTVOC INDEX1 

 

 

9.3 To serach for 
      the ABS file which the terminology appears 
9.3.1 Method for Using grep 

We may want to know about where the terminology is used in the library. It is the 

case where there is a question (where to define) or a question (Where and where is 

the theorem about it). In such a case, although it is not contained in in the standard 

MIZAR system, it is convenient to use a program called egrep. For example, to list 

the ABS file in which terminology called Metric appears, we input as foolws. 

 

  C:\>cd /mizar/abstr 

  C:\>/mizar/egrep Metric *.* \| more 

 

An egrep.exe program is free software (by Mr. M.Patnode) and we can get it from 

the following URL (of the Internet) . 

 

  http://www.eunet.bg/simtel.net/msdos/txtutl.html 
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It is convenient if we make it into the batch file including a change of a directory.  

    In addition, although it may be good to do like the above when searching for the 

general character string (alphanumeric character), the character string is to be 

searched for with a regular expression generally. Therefore, in order to search for 

the file and line which have the sum of three variables like a+b+c or x+y+z, we have 

to use it as follows. 

 

  egrep [a-z]\+[a-z]\+[a-z] *.* 

 

Here, the following means one of the letters from Alphabet a to z, and \+ means the 

letter of +. And let us keep in mind that we have to write a sign like + or - after 

backslash \. 

 

        [a-z] 

 

 

    Detailed explanation of a regular expression is in large numbers on the Internet. 

For example, please refer to the next URL. 

 

        http://www.robelle.com/smugbook/regexpr.html 

 

9.3.2 Method for serach on the Web 

If we have the Internet access, we can search for it on the web. 

    Please open the next URL by using a browser. A search page as shown in Fig.9.1 

is displayed on screen. 

 

  http://markun.cs.shinshu-u.ac.jp/Mirror/search_mml.html 

 

    On this page, first we enter a terminology to search (Metric in Fig.9.1). And we 
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choose with a radio button where we search from (from abstract file, miz file or 

both)(abstract file in Fig.9.1). Then we can search by clicking the search button. 

 

Fig.9.1 A search page on the Web 

 

 

 

 

 



 

 

 

 

 

Chapter 10 

About the version upgrade 

 

Mizar versions are frequently updated. At this time, the increase of a library is 

natural and the check of its article under description is not affected, but we require 

care about a checker's version upgrade. Please watch the homepage of MIZAR on the 

Internet frequently and take care to get the newest. 

    Sometimes, the basic theorem which was being used before will be canceled and 

we may be puzzled. In this case, the information is written in the file in the directory 

of a new version. The name of this file is the following. 

 

  CANCELED.DOC  
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Appendix A 

List of Reserved Words 

and antonym attr 
as assume be 
begin being by 
canceled case cases 
cluster clusters coherence 
compatibility consider consistency 
constructors contradiction correctness 
def deffunc definition 
definitions defpred end 
environ equals ex 
existence for from 
func given hence 
hereby requirements holds 
if iff implies 
is it let 
means mode not 
notation now of 
or otherwise over 
per pred proof 
provided qua reconsider 
redefine reserve scheme 
schemes set st 
struct such symmetry 
synonym take that 
the then theorem 
theorems thesis thus 
uniqueness vocabulary where 
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Appendix B 

A Compilation of  

Mizar Library Theorems 

Here, we have carried the theorems and definitions which were edited into the 

compact of article frequently quoted in the Mizar library. 

    Please refer to the original abstract file if needed. We can refer to it from the 

following URL. 

 

http://markun.cs.shinshu-u.ac.jp/Mirror/mizar.org/JFM/mmlident.html 
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B.1 TARSKI 

Tarski Grothendieck Set Theory by Andrzej Trybulec  

 

reserve x,y,z,u,N,M,X,Y,Z for set; 

 

2 (for x holds x in X iff x in Y) implies X = Y; 

 

def 1 func { y } means x in it iff x = y; 

def 2 func { y, z } means x in it iff x = y or x = z; 

def 3 pred X c= Y means x in X implies x in Y; 

def 4 func union X means x in it iff ex Y st x in Y & Y in X; 

 

7 x in X implies ex Y st Y in X & not ex x st x in X & x in Y; 

 

scheme Fraenkel { A()-> set, P[set, set] }: 

ex X st for x holds x in X iff ex y st y in A() & P[y,x] 

provided for x,y,z st P[x,y] & P[x,z] holds y = z; 

 

def 5 func [x,y] equals { { x,y }, { x } }; 

def 6 pred X,Y are_equipotent means 

     ex Z st 

       (for x st x in X ex y st y in Y & [x,y] in Z) & 

       (for y st y in Y ex x st x in X & [x,y]in Z) & 

       for x,y,z,u st [x,y] in Z & [z,u] in Z holdsx = z iff y = u; 

9 ex M st N in M & 

    (for X,Y holds X in M & Y c= X implies Y in M) & 

    (for X st X in M ex Z st Z in M & for Y st Y c= X holdsY in Z) & 

    (for X holds X c= M implies X,M are_equipotent or X in M); 
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B.2 AXIOMS 

Strong Arithmetic of Real Numbers by Andrzej Trybulec  

 

reserve x,y,z for real number; 

reserve i,k for Element of NAT; 

 

13 x + (y + z) = (x + y) + z; 

16 x * (y * z) = (x * y) * z; 

18 x * (y + z) = x * y + x * z; 

19 ex y st x + y = 0; 

20 x <> 0 implies ex y st x * y = 1; 

21 x <= y & y <= x implies x = y; 

22 x <= y & y <= z implies x <= z; 

24 x <= y implies x + z <= y + z; 

25 x <= y & 0 <= z implies x * z <= y * z; 

 

reserve r,r1,r2 for Element of REAL+; 

 

26 for X,Y being Subset of REAL 

     st for x,y st x in X & y in Y holds x <= y 

     ex z st for x,y st x in X & y in Y holds x <=z & z <= y; 

28 x in NAT & y in NAT implies x + y in NAT; 

29 for A being Subset of REAL 

     st 0 in A & for x st x in A holds x + 1 in A 

     holds NAT c= A; 

30 k = { i: i < k }; 
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B.3 BOOLE 

Boolean Properties of Sets by Library Committee  

 

1 for X being set holds X \/ {} = X; 

2 for X being set holds X /\ {} = {}; 

3 for X being set holds X \ {} = X; 

4 for X being set holds {} \ X = {}; 

5 for X being set holds X \+\ {} = X; 

6 for X being set st X is empty holds X = {}; 

7 for x, X being set st x in X holds X is non empty; 
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B.4 XBOOLE_0 

Boolean Properties of Sets --- Definitions  

by Library Committee 

 

reserve X, Y, Z, x, y, z for set; 

 

scheme Separation { A()-> set, P[set] } : 

ex X being set st for x being set  

 holds x in X iff x in A() & P[x]; 

 

def 1 func {} -> set means not ex x being set st x in it; 

der 2 func X \/ Y -> set means x in it iff x in X or x in Y; 

def 3 func X /\ Y -> set means x in it iff x in X & x in Y; 

def 4 func X \ Y -> set means x in it iff x in X & not x in Y; 

def 5 attr X is empty means X = {}; 

def 6 func X \+\ Y -> set equals (X \ Y) \/ (Y \ X); 

def 7 pred X misses Y means X /\ Y = {}; 

def 8 pred X c< Y means X c= Y & X <> Y; 

def 9 pred X,Y are_c=-comparable means X c= Y or Y c= X; 

def 10 redefine pred X = Y means X c= Y & Y c= X; 

 

1 x in X \+\ Y iff not (x in X iff x in Y); 

2 (for x holds not x in X iff (x in Y iff x in Z))  

      implies X = Y \+\ Z; 

 

cluster {} -> empty; 

cluster empty set; 

cluster non empty set; 

 

let D be non empty set, X be set; 

cluster D \/ X -> non empty; 

cluster X \/ D -> non empty; 

 

3 X meets Y iff ex x st x in X & x in Y; 

4 X meets Y iff ex x st x in X /\ Y; 

5 X misses Y & x in X \/ Y implies 

     ((x in X & not x in Y) or (x in Y & not x inX)); 

 

scheme Extensionality { X,Y() -> set, P[set] } : 
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     X() = Y() provided 

     for x holds x in X() iff P[x] and 

     for x holds x in Y() iff P[x]; 

 

scheme SetEq { P[set] } : 

     for X1,X2 being set st 

    (for x being set holds x in X1 iff P[x]) & 

    (for x being set holds x in X2 iff P[x]) holds X1 = X2; 
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B.5 XBOOLE_1 

Boolean Properties of Sets --- Theorems by Library Committee  

 

reserve x,A,B,X,X',Y,Y',Z,V for set; 

 

1 X c= Y & Y c= Z implies X c= Z; 

2 {} c= X; 

3 X c= {} implies X = {}; 

4 (X \/ Y) \/ Z = X \/ (Y \/ Z); 

5 (X \/ Y) \/ Z = (X \/ Z) \/ (Y \/ Z); 

6 X \/ (X \/ Y) = X \/ Y; 

7 X c= X \/ Y; 

8 X c= Z & Y c= Z implies X \/ Y c= Z; 

9 X c= Y implies X \/ Z c= Y \/ Z; 

10 X c= Y implies X c= Z \/ Y; 

11 X \/ Y c= Z implies X c= Z; 

12 X c= Y implies X \/ Y = Y; 

13 X c= Y & Z c= V implies X \/ Z c= Y \/ V; 

14 (Y c= X & Z c= X & for V st Y c= V & Z c= V holds X c= V) implies X 

= Y \/ Z; 

15 X \/ Y = {} implies X = {}; 

16 (X /\ Y) /\ Z = X /\ (Y /\ Z); 

17 X /\ Y c= X; 

18 X c= Y /\ Z implies X c= Y; 

19 Z c= X & Z c= Y implies Z c= X /\ Y; 

20 (X c= Y & X c= Z & for V st V c= Y & V c= Z holds V c= X) implies X 

= Y /\ Z; 

21 X /\ (X \/ Y) = X; 

22 X \/ (X /\ Y) = X; 

23 X /\ (Y \/ Z) = X /\ Y \/ X /\ Z; 

24 X \/ Y /\ Z = (X \/ Y) /\ (X \/ Z); 

25 (X /\ Y) \/ (Y /\ Z) \/ (Z /\ X) = (X \/ Y) /\ (Y \/ Z) /\ (Z \/ X); 

26 X c= Y implies X /\ Z c= Y /\ Z; 

27 X c= Y & Z c= V implies X /\ Z c= Y /\ V; 

28 X c= Y implies X /\ Y = X; 

29 X /\ Y c= X \/ Z; 

30 X c= Z implies X \/ Y /\ Z = (X \/ Y) /\ Z; 

31 (X /\ Y) \/ (X /\ Z) c= Y \/ Z; 

32 X \ Y = Y \ X implies X = Y; 
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33 X c= Y implies X \ Z c= Y \ Z; 

34 X c= Y implies Z \ Y c= Z \ X; 

35 X c= Y & Z c= V implies X \ V c= Y \ Z; 

36 X \ Y c= X; 

37 X \ Y = {} iff X c= Y; 

38 X c= Y \ X implies X = {}; 

39 X \/ (Y \ X) = X \/ Y; 

40 (X \/ Y) \ Y = X \ Y; 

41 (X \ Y) \ Z = X \ (Y \/ Z); 

42 (X \/ Y) \ Z = (X \ Z) \/ (Y \ Z); 

43 X c= Y \/ Z implies X \ Y c= Z; 

44 X \ Y c= Z implies X c= Y \/ Z; 

45 X c= Y implies Y = X \/ (Y \ X); 

46 X \ (X \/ Y) = {}; 

47 X \ X /\ Y = X \ Y; 

48 X \ (X \ Y) = X /\ Y; 

49 X /\ (Y \ Z) = (X /\ Y) \ Z; 

50 X /\ (Y \ Z) = X /\ Y \ X /\ Z; 

51 X /\ Y \/ (X \ Y) = X; 

52 X \ (Y \ Z) = (X \ Y) \/ X /\ Z; 

53 X \ (Y \/ Z) = (X \ Y) /\ (X \ Z); 

54 X \ (Y /\ Z) = (X \ Y) \/ (X \ Z); 

55 (X \/ Y) \ (X /\ Y) = (X \ Y) \/ (Y \ X); 

56 X c< Y & Y c< Z implies X c< Z; 

57 not (X c< Y & Y c< X); 

58 X c< Y & Y c= Z implies X c< Z; 

59 X c= Y & Y c< Z implies X c< Z; 

60 X c= Y implies not Y c< X; 

61 X <> {} implies {} c< X; 

62 not X c< {}; 

63 X c= Y & Y misses Z implies X misses Z; 

64 A c= X & B c= Y & X misses Y implies A misses B; 

65 X misses {}; 

66 X meets X iff X <> {}; 

67 X c= Y & X c= Z & Y misses Z implies X = {}; 

68 for A being non empty set st A c= Y & A c= Z holds Y meets Z; 

69 for A being non empty set st A c= Y holds A meets Y; 

70 X meets Y \/ Z iff X meets Y or X meets Z; 

71 X \/ Y = Z \/ Y & X misses Y & Z misses Y implies X = Z; 

72 X' \/ Y' = X \/ Y & X misses X' & Y misses Y' implies X = Y'; 

73 X c= Y \/ Z & X misses Z implies X c= Y; 

74 X meets Y /\ Z implies X meets Y; 
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75 X meets Y implies X /\ Y meets Y; 

76 Y misses Z implies X /\ Y misses X /\ Z; 

77 X meets Y & X c= Z implies X meets Y /\ Z; 

78 X misses Y implies X /\ (Y \/ Z) = X /\ Z; 

79 X \ Y misses Y; 

80 X misses Y implies X misses Y \ Z; 

81 X misses Y \ Z implies Y misses X \ Z; 

82 X \ Y misses Y \ X; 

83 X misses Y iff X \ Y = X; 

84 X meets Y & X misses Z implies X meets Y \ Z; 

85 X c= Y implies X misses Z \ Y; 

86 X c= Y & X misses Z implies X c= Y \ Z; 

87 Y misses Z implies (X \ Y) \/ Z = (X \/ Z) \ Y; 

88 X misses Y implies (X \/ Y) \ Y = X; 

89 X /\ Y misses X \ Y; 

90 X \ (X /\ Y) misses Y; 

91 (X \+\ Y) \+\ Z = X \+\ (Y \+\ Z); 

92 X \+\ X = {}; 

93 X \/ Y = (X \+\ Y) \/ X /\ Y; 

94 X \/ Y = X \+\ Y \+\ X /\ Y; 

95 X /\ Y = X \+\ Y \+\ (X \/ Y); 

96 X \ Y c= X \+\ Y; 

97 X \ Y c= Z & Y \ X c= Z implies X \+\ Y c= Z; 

98 X \/ Y = X \+\ (Y \ X); 

99 (X \+\ Y) \ Z = (X \ (Y \/ Z)) \/ (Y \ (X \/ Z)); 

100 X \ Y = X \+\ (X /\ Y); 

101 X \+\ Y = (X \/ Y) \ X /\ Y; 

102 X \ (Y \+\ Z) = X \ (Y \/ Z) \/ X /\ Y /\ Z; 

103 X /\ Y misses X \+\ Y; 

104 X c< Y or X = Y or Y c< X iff X,Y are_c=-comparable; 
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B.6 REAL_1 

Basic Properties of Real Numbers by Krzysztof Hryniewiecki  

 

mode Real is Element of REAL; 

 

reserve r for set; 

reserve x,y,z,t for real number; 

 

9 z<>0 & x*z=y*z implies x=y; 

10 x + z = y + z implies x=y; 

 

def 1 func -x -> real number means x + it = 0; 

def 2 func x" -> real number means x * it = 1 if x <> 0 

         otherwise it = 0; 

def 3 func x-y equals x+(-y); 

def 4 func x/y equals x * y"; 

 

cluster x-y -> real; 

cluster x/y -> real; 

 

redefine func -x -> Real; 

redefine func x" -> Real; 

 

redefine func x-y -> Real; 

redefine func x/y -> Real; 

 

17 x+y-z=x+(y-z); 

19 0-x=-x; 

21 (-x)*y = -(x*y) & (-x)*y=x*(-y); 

22 x<>0 iff -x<>0; 

23 x*y=0 iff x=0 or y=0; 

24 x"*y"=(x*y)"; 

25 x-0=x; 

26 -0=0; 

27 x-(y+z)=x-y-z; 

28 x-(y-z)=x-y+z; 

29 x*(y-z)=x*y - x*z; 

30 x=x+z-z; 

31 x<>0 implies x"<>0; 
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33 1/x=x" & 1/x"=x; 

34 x<>0 implies x*(1/x)=1; 

35 (x/y) * (z/t) =(x*z)/(y*t); 

36 x-x=0; 

37 x<>0 implies x/x = 1; 

38 z<>0 implies x/y=(x*z)/(y*z); 

39 (-x/y=(-x)/y & x/(-y)=-x/y); 

40 x/z + y/z = (x+y)/z & x/z - y/z = (x-y)/z; 

41 y<>0 & t<>0 implies x/y + z/t =(x*t + z*y)/(y*t) 

     & x/y - z/t =(x*t - z*y)/(y*t); 

42 x/(y/z)=(x*z)/y; 

43 y<>0 implies x/y*y=x; 

44 for x,y ex z st x=y+z; 

45 for x,y st y<>0 ex z st x=y*z; 

49 x <= y implies x - z <= y - z; 

50 x<=y iff -y<=-x; 

52 x<=y & z<=0 implies y*z<=x*z; 

53 x+z<=y+z implies x <= y; 

54 x-z<=y-z implies x <= y; 

55 x<=y & z<=t implies x+z<=y+t; 

 

def 5 redefine pred x<y means x<=y & x<>y; 

 

66 x < 0 iff 0 < -x; 

67 x<y & z<=t implies x+z<y+t; 

69 0<x implies y<y+x; 

70 0<z & x<y implies x*z<y*z; 

71 z<0 & x<y implies y*z<x*z; 

72 0<z implies 0<z"; 

73 0<z implies (x<y iff x/z<y/z); 

74 z<0 implies (x<y iff y/z<x/z); 

75 x<y implies ex z st x<z & z<y; 

76 for x ex y st x<y; 

77 for x ex y st y<x; 

 

scheme SepReal { P[Real]}: 

ex X being Subset of REAL st 

for x being Real holds x in X iff P[x]; 

 

81 (x/y)"=y/x; 

82 (x/y)/(z/t)=(x*t)/(y*z); 

83 -(x-y)=y-x; 
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84 x+y <= z iff x <= z-y; 

86 x <= y+z iff x-y <= z; 

92 (x <= y & z <= t implies x - t <= y - z) & 

    (x < y & z <= t or x <= y & z < t impliesx-t < y-z); 

93 0 <= x*x; 
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B.7 NAT_1 

The Fundamental Properties of Natural Numbers by Grzegorz Bancerek  

 

mode Nat is Element of NAT; 

 

reserve x for Real, 

   k,l,m,n for Nat, 

   h,i,j,p for natural number, 

   X for Subset of REAL; 

 

2 for X st 0 in X & for x st x in X holds x + 1 in X 

   for k holds k in X; 

 

redefine func n + k -> Nat; 

 

cluster n + k -> natural; 

 

scheme Ind { P[Nat] } : 

  for k being Nat holds P[k] 

  provided 

  P[0] and 

  for k being Nat st P[k] holds P[k + 1]; 

 

scheme Nat_Ind { P[natural number] } : 

  for k being natural number holds P[k] 

  provided 

  P[0] and 

  for k be natural number st P[k] holds P[k + 1]; 

 

redefine func n * k -> Nat; 

 

cluster n * k -> natural; 

 

18 0 <= i; 

19 0 <> i implies 0 < i; 

20 i <= j implies i * h <= j * h; 

21 0 <> i + 1; 

22 i = 0 or ex k st i = k + 1; 

23 i + j = 0 implies i = 0 & j = 0; 
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scheme Def_by_Ind { N()->Nat, F(Nat,Nat)->Nat, P[Nat,Nat] } : 

  (for k ex n st P[k,n] ) & 

  for k,n,m st P[k,n] & P[k,m] holds n = m 

  provided 

  for k,n holds P[k,n] iff 

  k = 0 & n = N() or ex m,l st k = m + 1 & P[m,l] & n= F(k,l); 

 

26 for i,j st i <= j + 1 holds i <= j or i = j + 1; 

27 i <= j & j <= i + 1 implies i = j or j = i + 1; 

28 for i,j st i <= j ex k st j = i + k; 

29 i <= i + j; 

 

scheme Comp_Ind { P[Nat] } : 

  for k holds P[k] 

  provided 

  for k st for n st n < k holds P[n] holds P[k]; 

 

scheme Min { P[Nat] } : 

  ex k st P[k] & for n st P[n] holds k <= n 

  provided 

  ex k st P[k]; 

 

scheme Max { P[Nat],N()->Nat } : 

  ex k st P[k] & for n st P[n] holds n <= k 

  provided 

  for k st P[k] holds k <= N() and 

  ex k st P[k]; 

 

37 i <= j implies i <= j + h; 

38 i < j + 1 iff i <= j; 

40 i * j = 1 implies i = 1 & j = 1; 

 

scheme Regr { P[Nat] } : 

  P[0] 

  provided 

  ex k st P[k] and 

  for k st k <> 0 & P[k] ex n st n < k & P[n]; 

 

reserve k1,t,t1 for Nat; 

 

42 for m st 0 < m for n ex k,t st n = (m*k)+t & t < m; 
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43 for n,m,k,k1,t,t1 being natural number 

st n = m*k+t & t < m & n = m*k1+t1 & t1 < m holds 

k = k1 & t = t1; 

 

def 1 func k div l -> Nat means 

 ( ex t st k = l * it + t & t < l ) or it = 0 & l = 0; 

def 2 func k mod l -> Nat means 

 ( ex t st k = l * t + it & it < l ) or it = 0 & l = 0; 

 

46 0 < i implies j mod i < i; 

47 0 < i implies j = i * (j div i) + (j mod i); 

 

def 3 pred k divides l means ex t st l = k * t; 

 

49 j divides i iff i = j * (i div j); 

51 i divides j & j divides h implies i divides h; 

52 i divides j & j divides i implies i = j; 

53 i divides 0 & 1 divides i; 

54 0 < j & i divides j implies i <= j; 

55 i divides j & i divides h implies i divides j+h; 

56 i divides j implies i divides j * h; 

57 i divides j & i divides j + h implies i divides h; 

58 i divides j & i divides h implies i divides j mod h; 

 

def 4 func k lcm n -> Nat means 

  k divides it & n divides it & for m st k divides m &n divides 

  m holds it divides m; 

def 5 func k hcf n -> Nat means 

  it divides k & it divides n & for m st m divides k &m divides 

  n holds m divides it; 

 

scheme Euklides { Q(Nat)->Nat, a,b()->Nat } : 

  ex n st Q(n) = a() hcf b() & Q(n + 1) = 0 

  provided 

  0 < b() & b() < a() and 

  Q(0) = a() & Q(1) = b() and 

  for n holds Q(n + 2) = Q(n) mod Q(n + 1); 

 

cluster -> ordinal Nat; 

cluster non empty ordinal Subset of REAL; 
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B.8 FUNCT_1 

Functions and Their Basic Properties by Czeslaw Bylinski  

 

reserve X,X1,X2,Y,Y1,Y2 for set, 

p,x,x1,x2,y,y1,y2,z,z1,z2 for set; 

 

def 1 attr X is Function-like means 

      for x,y1,y2 st [x,y1] in X & [x,y2] in X holdsy1 = y2; 

 

cluster Relation-like Function-like set; 

 

mode Function is Function-like Relation-like set; 

 

cluster empty -> Function-like set; 

 

reserve f,f1,f2,g,g1,g2,h for Function; 

 

2 for F being set st 

    (for p st p in F ex x,y st [x,y] = p) & 

    (for x,y1,y2 st [x,y1] in F & [x,y2] in F holds y1 =y2) 

    holds F is Function; 

 

scheme GraphFunc{A()->set,P[set,set]}: 

 ex f st for x,y holds [x,y] in f iff x in A() & P[x,y] 

 provided 

 for x,y1,y2 st P[x,y1] & P[x,y2] holds y1 = y2; 

 

def 4 func f.x -> set means 

     [x,it] in f if x in dom f otherwise it = {}; 

 

8 [x,y] in f iff x in dom f & y = f.x; 

9 dom f = dom g & (for x st x in dom f holds f.x = g.x) implies f = g; 

 

def 5 redefine func rng f means 

     for y holds y in it iff ex x st x in dom f & y= f.x; 

 

12 x in dom f implies f.x in rng f; 

14 dom f = {x} implies rng f = {f.x}; 
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scheme FuncEx{A()->set,P[set,set]}: 

 ex f st dom f = A() & for x st x in A() holds P[x,f.x] 

 provided 

 for x,y1,y2 st x in A() & P[x,y1] & P[x,y2] holds y1 = y2 and 

 for x st x in A() ex y st P[x,y]; 

 

scheme Lambda{A()->set,F(set)->set}: 

 ex f being Function st dom f = A() & for x st x in A()  

 holds f.x =  F(x); 

 

15 X <> {} implies for y ex f st dom f = X & rng f = {y}; 

16 (for f,g st dom f = X & dom g = X holds f = g) implies X = {}; 

17 dom f = dom g & rng f = {y} & rng g = {y} implies f = g; 

18 Y <> {} or X = {} implies ex f st X = dom f & rng f c= Y; 

19 (for y st y in Y ex x st x in dom f & y = f.x) implies Y c= rng f; 

 

redefine func f*g; 

synonym g*f; 

 

cluster g*f -> Function-like; 

 

20 for h st 

    (for x holds x in dom h iff x in dom f & f.x in dom g)& 

    (for x st x in dom h holds h.x = g.(f.x)) 

    holds h = g*f; 

 

21 x in dom(g*f) iff x in dom f & f.x in dom g; 

22 x in dom(g*f) implies (g*f).x = g.(f.x); 

23 x in dom f implies (g*f).x = g.(f.x); 

 

25 z in rng(g*f) implies z in rng g; 

 

27 dom(g*f) = dom f implies rng f c= dom g; 

33 rng f c= Y & (for g,h st dom g = Y & dom h = Y & g*f = h*f  

     holds g = h) implies Y = rng f; 

 

redefine func diagonal X; 

synonym id X; 

 

cluster id X -> Function-like; 

 

34 f = id X iff dom f = X & for x st x in X holds f.x = x; 
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35 x in X implies (id X).x = x; 

37 dom(f*(id X)) = dom f /\ X; 

38 x in dom f /\ X implies f.x = (f*(id X)).x; 

40 x in dom((id Y)*f) iff x in dom f & f.x in Y; 

42 f*(id dom f) = f & (id rng f)*f = f; 

43 (id X)*(id Y) = id(X /\ Y); 

44 rng f = dom g & g*f = f implies g = id dom g; 

 

def 8 attr f is one-to-one means 

    for x1,x2 st x1 in dom f & x2 in dom f & f.x1 = f.x2holds x1 = x2; 

 

46 f is one-to-one & g is one-to-one implies g*f is one-to-one; 

47 g*f is one-to-one & rng f c= dom g implies f is one-to-one; 

48 g*f is one-to-one & rng f = dom g implies f is one-to-one & 

     g is one-to-one; 

49 f is one-to-one iff 

     (for g,h st rng g c= dom f & rng h c= dom f &dom g = dom h & 

      f*g = f*h holds g = h); 

50 dom f = X & dom g = X & rng g c= X & f is one-to-one & f*g = f 

     implies g = id X; 

51 rng(g*f) = rng g & g is one-to-one implies dom g c= rng f; 

52 id X is one-to-one; 

53 (ex g st g*f = id dom f) implies f is one-to-one; 

 

cluster empty Function; 

 

cluster empty -> one-to-one Function; 

 

cluster one-to-one Function; 

 

cluster f~ -> Function-like; 

 

def 9 func f" -> Function equals f~; 

 

54 f is one-to-one implies for g being Function holds g=f" iff 

    dom g = rng f &for y,x holds y in rng f & x = g.y 

    iff x in dom f & y = f.x; 

55 f is one-to-one implies rng f = dom(f") & dom f = rng(f"); 

56 f is one-to-one & x in dom f implies x = (f").(f.x) & x = (f"*f).x; 

57 f is one-to-one & y in rng f implies y = f.((f").y) & y = (f*f").y; 

58 f is one-to-one implies dom(f"*f) = dom f & rng(f"*f) = dom f; 

59 f is one-to-one implies dom(f*f") = rng f & rng(f*f") = rng f; 
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60 f is one-to-one & dom f = rng g & rng f = dom g & 

    (for x,y st x in dom f & y in dom g holds f.x = y iffg.y = x) 

    implies g = f"; 

61 f is one-to-one implies f"*f = id dom f & f*f" = id rng f; 

62 f is one-to-one implies f" is one-to-one; 

63 f is one-to-one & rng f = dom g & g*f = id dom f implies g = f"; 

64 f is one-to-one & rng g = dom f & f*g = id rng f implies g = f"; 

65 f is one-to-one implies (f")" = f; 

66 f is one-to-one & g is one-to-one implies (g*f)" = f"*g"; 

67 (id X)" = (id X); 

 

cluster f|X -> Function-like; 

 

68 g = f|X iff dom g = dom f /\ X & for x st x in dom g  

    holds g.x = f.x; 

 

70 x in dom(f|X) implies (f|X).x = f.x; 

71 x in dom f /\ X implies (f|X).x = f.x; 

72 x in X implies (f|X).x = f.x; 

73 x in dom f & x in X implies f.x in rng(f|X); 

74 X c= dom f implies dom(f|X) = X; 

76 dom(f|X) c= dom f & rng(f|X) c= rng f; 

82 X c= Y implies (f|X)|Y = f|X & (f|Y)|X = f|X; 

84 f is one-to-one implies f|X is one-to-one; 

 

cluster Y|f -> Function-like; 

 

85 g = Y|f iff (for x holds x in dom g iff x in dom f & f.x in Y) & 

    (for x st x in dom g holds g.x = f.x); 

86 x in dom(Y|f) iff x in dom f & f.x in Y; 

87 x in dom(Y|f) implies (Y|f).x = f.x; 

89 dom(Y|f) c= dom f & rng(Y|f) c= rng f; 

97 X c= Y implies Y|(X|f) = X|f & X|(Y|f) = X|f; 

99 f is one-to-one implies Y|f is one-to-one; 

 

def 12 func f.:X means 

     for y holds y in it iff ex x st x in dom f & xin X & y = f.x; 

 

117 x in dom f implies f.:{x} = {f.x}; 

118 x1 in dom f & x2 in dom f implies f.:{x1,x2} = {f.x1,f.x2}; 

120 (Y|f).:X c= f.:X; 

121 f is one-to-one implies f.:(X1 /\ X2) = f.:X1 /\ f.:X2; 
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122 (for X1,X2 holds f.:(X1 /\ X2) = f.:X1 /\ f.:X2)  

      implies f is one-to-one; 

123 f is one-to-one implies f.:(X1 \ X2) = f.:X1 \ f.:X2; 

124 (for X1,X2 holds f.:(X1 \ X2) = f.:X1 \ f.:X2)  

      implies f is one-to-one; 

125 X misses Y & f is one-to-one implies f.:X misses f.:Y; 

126 (Y|f).:X = Y /\ f.:X; 

 

def 13 redefine func f"Y means 

      for x holds x in it iff x in dom f & f.x in Y; 

 

137 f"(Y1 /\ Y2) = f"Y1 /\ f"Y2; 

138 f"(Y1 \ Y2) = f"Y1 \ f"Y2; 

139 (f|X)"Y = X /\ (f"Y); 

142 y in rng f iff f"{y} <> {}; 

143 (for y st y in Y holds f"{y} <> {}) implies Y c= rng f; 

144 (for y st y in rng f ex x st f"{y} = {x}) iff f is one-to-one; 

145 f.:(f"Y) c= Y; 

146 X c= dom f implies X c= f"(f.:X); 

147 Y c= rng f implies f.:(f"Y) = Y; 

148 f.:(f"Y) = Y /\ f.:(dom f); 

149 f.:(X /\ f"Y) c= (f.:X) /\ Y; 

150 f.:(X /\ f"Y) = (f.:X) /\ Y; 

151 X /\ f"Y c= f"(f.:X /\ Y); 

152 f is one-to-one implies f"(f.:X) c= X; 

153 (for X holds f"(f.:X) c= X) implies f is one-to-one; 

154 f is one-to-one implies f.:X = (f")"X; 

155 f is one-to-one implies f"Y = (f").:Y; 

156 Y = rng f & dom g = Y & dom h = Y & g*f = h*f implies g = h; 

157 f.:X1 c= f.:X2 & X1 c= dom f & f is one-to-one implies X1 c= X2; 

158 f"Y1 c= f"Y2 & Y1 c= rng f implies Y1 c= Y2; 

159 f is one-to-one iff for y ex x st f"{y} c= {x}; 

160 rng f c= dom g implies f"X c= (g*f)"(g.:X); 
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B.9 SUBSET_1 

Properties of Subsets by Zinaida Trybulec  

 

reserve E,X,x,y for set; 

 

cluster bool X -> non empty; 

cluster { x } -> non empty; 

cluster { x, y } -> non empty; 

 

def 2 mode Element of X means 

     it in X if X is non empty otherwise it is empty; 

 

mode Subset of X is Element of bool X; 

 

cluster non empty Subset of X; 

 

cluster [: X1,X2 :] -> non empty; 

 

cluster [: X1,X2,X3 :] -> non empty; 

 

cluster [: X1,X2,X3,X4 :] -> non empty; 

 

redefine mode Element of X -> Element of D; 

 

cluster empty Subset of E; 

 

def 3 func {} E -> empty Subset of E equals {}; 

def 4 func [#] E -> Subset of E equals E; 

 

4 {} is Subset of X; 

 

reserve A,B,C for Subset of E; 

 

7 (for x being Element of E holds x in A implies x in B)  

    implies A c= B; 

8 (for x being Element of E holds x in A iff x in B) implies A = B; 

10 A <> {} implies ex x being Element of E st x in A; 

 

def 5 func A` -> Subset of E equals E \ A; 
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redefine func A \/ B -> Subset of E; 

func A /\ B -> Subset of E; 

func A \ B -> Subset of E; 

func A \+\ B -> Subset of E; 

 

15 (for x being Element of E holds x in A iff x in B or x in C) 

     implies A = B \/ C; 

16 (for x being Element of E holds x in A iff x in B & x in C) 

     implies A = B /\ C; 

17 (for x being Element of E holds x in A iff x in B & not x in C) 

     implies A = B \ C; 

18 (for x being Element of E holds x in A iff not(x in B iff x in C)) 

     implies A = B \+\ C; 

21 {} E = ([#] E)`; 

22 [#] E = ({} E)`; 

25 A \/ A` = [#]E; 

26 A misses A`; 

28 A \/ [#]E = [#]E; 

29 (A \/ B)` = A` /\ B`; 

30 (A /\ B)` = A` \/ B`; 

31 A c= B iff B` c= A`; 

32 A \ B = A /\ B`; 

33 (A \ B)` = A` \/ B; 

34 (A \+\ B)` = A /\ B \/ A` /\ B`; 

35 A c= B` implies B c= A`; 

36 A` c= B implies B` c= A; 

38 A c= A` iff A = {}E; 

39 A` c= A iff A = [#]E; 

40 X c= A & X c= A` implies X = {}; 

41 (A \/ B)` c= A`; 

42 A` c= (A /\ B)`; 

43 A misses B iff A c= B`; 

44 A misses B` iff A c= B; 

46 A misses B & A` misses B` implies A = B`; 

47 A c= B & C misses B implies A c= C`; 

48 (for a being Element of A holds a in B) implies A c= B; 

49 (for x being Element of E holds x in A) implies E = A; 

50 E <> {} implies for A,B holds A = B` iff 

    for x being Element of E holds x in A iff not x in B; 

51 E <> {} implies for A,B holds A = B` iff 

    for x being Element of E holds not x in A iff x in B; 

52 E <> {} implies for A,B holds A = B` iff 
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    for x being Element of E holds not(x in A iff x in B); 

53 x in A` implies not x in A; 

 

reserve x1,x2,x3,x4,x5,x6,x7,x8 for Element of X; 

 

54 X <> {} implies {x1} is Subset of X; 

55 X <> {} implies {x1,x2} is Subset of X; 

56 X <> {} implies {x1,x2,x3} is Subset of X; 

57 X <> {} implies {x1,x2,x3,x4} is Subset of X; 

58 X <> {} implies {x1,x2,x3,x4,x5} is Subset of X; 

59 X <> {} implies {x1,x2,x3,x4,x5,x6} is Subset of X; 

60 X <> {} implies {x1,x2,x3,x4,x5,x6,x7} is Subset of X; 

61 X <> {} implies {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of X; 

62 x in X implies {x} is Subset of X; 

 

scheme Subset_Ex { A()-> set, P[set] } : 

  ex X being Subset of A() st for x  

  holds x in X iff x in A() & P[x]; 

 

scheme Subset_Eq {X() -> set, P[set]}: 

 for X1,X2 being Subset of X() st 

  (for y being Element of X() holds y in X1 iff P[y]) & 

  (for y being Element of X() holds y in X2 iff P[y])  

  holds X1 = X2; 

 

redefine pred X misses Y; 
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B.10 FINSEQ_1 

Segments of Natural Numbers and Finite Sequences  

by Grzegorz Bancerek, and Krzysztof Hryniewiecki  

 

reserve k,l,m,n,k1,k2 for Nat, 

           a,b,c for natural number, 

           x,y,z,y1,y2,X,Y for set, 

           f,g for Function; 

 

def 1 func Seg n -> set equals { k : 1 <= k & k <= n }; 

redefine func Seg n -> Subset of NAT; 

 

3 a in Seg b iff 1 <= a & a <= b; 

4 Seg 0 = {} & Seg 1 = { 1 } & Seg 2 = { 1,2 }; 

5 a = 0 or a in Seg a; 

6 a+1 in Seg(a+1); 

7 a <= b iff Seg a c= Seg b; 

8 Seg a = Seg b implies a = b; 

9 c <= a implies 

     Seg c = Seg c /\ Seg a & Seg c = Seg a /\ Seg c; 

10 (Seg c = Seg c /\ Seg a or Seg c = Seg a /\ Seg c ) 

      implies c <= a; 

11 Seg a \/ { a+1 } = Seg (a+1); 

 

def 2 attr IT is FinSequence-like means ex n st dom IT = Seg n; 

     cluster FinSequence-like Function; 

     mode FinSequence is FinSequence-like Function; 

 

reserve p,q,r,s,t for FinSequence; 

 

cluster Seg n -> finite; 

cluster FinSequence-like -> finite Function; 

 

def 3 func Card p -> Nat means Seg it = dom p; 

     redefine func dom p -> Subset of NAT; 

 

14 {} is FinSequence; 

15 (ex k st dom f c= Seg k) implies ex p st f c= p; 
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scheme SeqEx{A()->Nat,P[set,set]}: 

  ex p st dom p = Seg A() & for k st k in Seg A() holds P[k,p.k] 

  provided 

  for k,y1,y2 st k in Seg A() & P[k,y1] & P[k,y2] holds y1=y2 

   and 

  for k st k in Seg A() ex x st P[k,x]; 

 

scheme SeqLambda{A()->Nat,F(set) -> set}: 

  ex p being FinSequence st len p = A() & for k st k in Seg A()  

  holds p.k=F(k); 

 

16 z in p implies ex k st k in dom p & z=[k,p.k]; 

17 X = dom p & X = dom q & (for k st k in X holds p.k = q.k)  

   implies p=q; 

18 ( (len p = len q) & for k st 1 <=k & k <= len p holds p.k=q.k ) 

    implies p=q; 

19 p|(Seg a) is FinSequence; 

20 rng p c= dom f implies f*p is FinSequence; 

21 a <= len p & q = p|(Seg a) implies len q = a & dom q = Seg a; 

 

def 4 mode FinSequence of D -> FinSequence means rng it c= D; 

     cluster {} -> FinSequence-like; 

     cluster FinSequence-like PartFunc of NAT,D; 

 

redefine mode FinSequence of D -> FinSequence-like PartFunc of NAT,D; 

 

reserve D for set; 

 

23 for p being FinSequence of D holds p|(Seg a) is FinSequence of D; 

24 for D being non empty set 

    ex p being FinSequence of D st len p = a; 

 

cluster empty FinSequence; 

 

25 len p = 0 iff p = {}; 

26 p={} iff dom p = {}; 

27 p={} iff rng p= {}; 

29 for D be set holds {} is FinSequence of D; 

 

cluster empty FinSequence of D; 

 

def 5 func <*x*> -> set equals { [1,x] }; 
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def 6 func <*>D -> empty FinSequence of D equals {}; 

 

32 p=<*>(D) iff len p = 0; 

 

def 7 func p^q -> FinSequence means 

     dom it = Seg (len p + len q) & 

     (for k st k in dom p holds it.k=p.k) & 

     (for k st k in dom q holds it.(len p + k) = q.k); 

 

35 len(p^q) = len p + len q; 

36 (len p + 1 <= k & k <= len p + len q) implies (p^q).k=q.(k-len p); 

37 len p < k & k <= len(p^q) implies (p^q).k = q.(k - len p); 

38 k in dom (p^q) implies 

(k in dom p or (ex n st n in dom q & k=len p + n)); 

39 dom p c= dom(p^q); 

40 x in dom q implies ex k st k=x & len p + k in dom(p^q); 

41 k in dom q implies len p + k in dom(p^q); 

42 rng p c= rng(p^q); 

43 rng q c= rng(p^q); 

44 rng(p^q) = rng p \/ rng q; 

45 p^q^r = p^(q^r); 

46 p^r = q^r or r^p = r^q implies p = q; 

47 p^{} = p & {}^p = p; 

48 p^q = {} implies p={} & q={}; 

 

redefine func p^q -> FinSequence of D; 

 

def 8 redefine func <*x*> -> Function means dom it = Seg 1 & it.1 = x; 

     cluster <*x*> -> Function-like Relation-like; 

     cluster <*x*> -> FinSequence-like; 

 

50 p^q is FinSequence of D implies 

     p is FinSequence of D & q is FinSequence of D; 

 

def 9 func <*x,y*> -> set equals <*x*>^<*y*>; 

def 10 func <*x,y,z*> -> set equals <*x*>^<*y*>^<*z*>; 

 

cluster <*x,y*> -> Function-like Relation-like; 

cluster <*x,y,z*> -> Function-like Relation-like; 

cluster <*x,y*> -> FinSequence-like; 

cluster <*x,y,z*> -> FinSequence-like; 
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52 <*x*> = { [1,x] }; 

55 p=<*x*> iff dom p = Seg 1 & rng p = {x}; 

56 p=<*x*> iff len p = 1 & rng p = {x}; 

57 p = <*x*> iff len p = 1 & p.1 = x; 

58 (<*x*>^p).1 = x; 

59 (p^<*x*>).(len p + 1)=x; 

60 <*x,y,z*>=<*x*>^<*y,z*> & 

    <*x,y,z*>=<*x,y*>^<*z*>; 

61 p = <*x,y*> iff len p = 2 & p.1=x & p.2=y; 

62 p = <*x,y,z*> iff len p = 3 & p.1 = x & p.2 = y & p.3 = z; 

63 p <> {} implies ex q,x st p=q^<*x*>; 

 

redefine func <*x*> -> FinSequence of D; 

 

scheme IndSeq{P[FinSequence]}: 

 for p holds P[p] 

   provided 

   P[{}] and 

   for p,x st P[p] holds P[p^<*x*>]; 

 

64 for p,q,r,s being FinSequence st p^q = r^s & len p <= len r 

     ex t being FinSequence st p^t = r; 

 

def 11 func D* -> set means x in it iff x is FinSequence of D; 

 

cluster D* -> non empty; 

 

66 {} in D*; 

 

scheme SepSeq{D()->non empty set, P[FinSequence]}: 

  ex X st (for x holds x in X iff 

    ex p st (p in D()* & P[p] & x=p)); 

 

def 12 attr IT is FinSubsequence-like means ex k st dom IT c= Seg k; 

 

cluster FinSubsequence-like Function; 

mode FinSubsequence is FinSubsequence-like Function; 

 

68 for p being FinSequence holds p is FinSubsequence; 

69 p|X is FinSubsequence & X|p is FinSubsequence; 

 

reserve p' for FinSubsequence; 
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def 13 given k such that X c= Seg k; 

     func Sgm X -> FinSequence of NAT means 

     rng it = X & for l,m,k1,k2 st 

       ( 1 <= l & l < m & m <= lenit & 

           k1=it.l & k2=it.m) holds k1< k2; 

 

71 rng Sgm dom p' = dom p'; 

 

def 14 func Seq p' -> Function equals p'* Sgm(dom p'); 

 

cluster Seq p' -> FinSequence-like; 

 

72 for X st ex k st X c= Seg k holds Sgm X = {} iff X = {}; 

73 D is finite iff ex p st D = rng p; 

 

cluster rng p -> finite; 

 

74 Seg n,Seg m are_equipotent implies n = m; 

75 Seg n,n are_equipotent; 

76 Card Seg n = Card n; 

77 X is finite implies ex n st X,Seg n are_equipotent; 

78 for n being Nat holds 

     card Seg n = n & card n = n & card Card n =n; 
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B.11 FUNCT_2 

Functions from a Set to a Set by Czeslaw Bylinski  

 

reserve P,Q,X,Y,Y1,Y2,Z,p,x,x',x1,x2,y,y1,y2,z for set; 

 

def 1 attr R is quasi_total means X = dom R if Y = {} implies X = {} 

otherwise R = {}; 

 

cluster quasi_total Function-like Relation of X,Y; 

cluster total -> quasi_total PartFunc of X,Y; 

mode Function of X,Y is quasi_total Function-like Relation of X,Y; 

 

3 for f being Function holds f is Function of dom f, rng f; 

4 for f being Function st rng f c= Y holds f is Function of dom f, Y; 

5 for f being Function st dom f = X & for x st x in X 

    holds f.x in Y holds f is Function of X,Y; 

6 for f being Function of X,Y st Y <> {} & x in X holds f.x in rng f; 

7 for f being Function of X,Y st Y <> {} & x in X holds f.x in Y; 

8 for f being Function of X,Y st (Y = {} implies X = {}) & rng f c=Z 

     holds f is Function of X,Z; 

9 for f being Function of X,Y 

st (Y = {} implies X = {}) & Y c= Z holds f is Function of X,Z; 

 

scheme FuncEx1{X, Y() -> set, P[set,set]}: 

ex f being Function of X(),Y() st for x st x in X() holds P[x,f.x] 

provided 

for x st x in X() ex y st y in Y() & P[x,y]; 

 

scheme Lambda1{X, Y() -> set, F(set)->set}: 

ex f being Function of X(),Y() st for x st x in X() holds f.x = F(x) 

provided 

for x st x in X() holds F(x) in Y(); 

 

def 2 func Funcs(X,Y) -> set means 

     x in it iff ex f being Function st x = f & domf = X & rng f c= Y; 

 

11 for f being Function of X,Y st Y = {} implies X = {}  

      holds f in Funcs(X,Y); 

12 for f being Function of X,X holds f in Funcs(X,X); 
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14 X <> {} implies Funcs(X,{}) = {}; 

16 for f being Function of X,Y 

     st Y <> {} & for y st y in Y ex x st x inX & y = f.x  

     holds rng f = Y; 

17 for f being Function of X,Y st y in Y & 

     rng f = Y ex x st x in X & f.x = y; 

18 for f1,f2 being Function of X,Y 

      st for x st x in X holds f1.x = f2.x 

      holds f1 = f2; 

19 for f being Function of X,Y for g being Function of Y,Z 

      st Y = {} implies Z = {} or X = {} 

      holds g*f is Function of X,Z; 

20 for f being Function of X,Y for g being Function of Y,Z 

     st Y <> {} & Z <> {} & rng f =Y & rng g = Z holds rng(g*f) = Z; 

21 for f being Function of X,Y, g being Function 

     st Y <> {} & x in X holds (g*f).x = g.(f.x); 

22 for f being Function of X,Y st Y <> {} holds rng f = Y iff 

     for Z st Z <> {} for g,h being Function of Y,Zst g*f = h*f 

      holds g = h; 

23 for f being Function of X,Y 

     st Y = {} implies X = {} holds f*(id X) = f & (idY)*f = f; 

24 for f being Function of X,Y for g being Function of Y,X 

      st f*g = id Y holds rng f = Y; 

25 for f being Function of X,Y st Y = {} implies X = {} 

     holds f is one-to-one iff 

     for x1,x2 st x1 in X & x2 in X & f.x1 = f.x2holds x1 = x2; 

     for f being Function of X,Y for g being Function ofY,Z 

     st (Z = {} implies Y = {}) & (Y = {}  

     implies X = {}) & g*f is one-to-one 

     holds f is one-to-one; 

27 for f being Function of X,Y st X <> {} & Y <> {} 

     holds f is one-to-one iff 

     for Z for g,h being Function of Z,X st f*g = f*h holdsg = h; 

28 for f being Function of X,Y for g being Function of Y,Z 

     st Z <> {} & rng(g*f) = Z & g is one-to-oneholds rng f = Y; 

29 for f being Function of X,Y for g being Function of Y,X 

     st Y <> {} & g*f = id X holds f is one-to-one& rng g = X; 

30 for f being Function of X,Y for g being Function of Y,Z 

     st (Z = {} implies Y = {}) & g*f is one-to-one& rng f = Y 

     holds f is one-to-one & g is one-to-one; 

31 for f being Function of X,Y st f is one-to-one & rng f = Y 

     holds f" is Function of Y,X; 
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32 for f being Function of X,Y 

     st Y <> {} & f is one-to-one & x in Xholds (f").(f.x) = x; 

34 for f being Function of X,Y for g being Function of Y,X 

     st X <> {} & Y <> {} & rng f =Y & f is one-to-one & 

     for y,x holds y in Y & g.y = x iff x in X &f.x = y 

     holds g = f"; 

35 for f being Function of X,Y 

     st Y <> {} & rng f = Y & f is one-to-one  

     holds f"*f = id X & f*f" = id Y; 

36 for f being Function of X,Y for g being Function of Y,X 

     st X <> {} & Y <> {} & rng f =Y & g*f = id X & f is one-to-one 

     holds g = f"; 

37 for f being Function of X,Y st Y <> {} 

     & ex g being Function of Y,X st g*f = id X  

      holds f is one-to-one; 

38 for f being Function of X,Y 

      st (Y = {} implies X = {}) & Z c= X holds f|Zis Function of Z,Y; 

40 for f being Function of X,Y st X c= Z holds f|Z = f; 

41 for f being Function of X,Y st Y <> {} & x in X & f.x in 

     Z holds (Z|f).x = f.x; 

42 for f being Function of X,Y st (Y = {} implies X = {}) & Y c= 

Z         holds Z|f = f; 

43 for f being Function of X,Y st Y <> {} 

     for y holds y in f.:P iff ex x st x in X & x inP & y = f.x; 

44 for f being Function of X,Y holds f.:P c= Y; 

 

redefine func f.:P -> Subset of Y; 

 

45 for f being Function of X,Y st Y = {} implies X = {}  

     holds f.:X = rng f; 

46 for f being Function of X,Y 

     st Y <> {} for x holds x in f"Q iff x in X & f.x in Q; 

47 for f being PartFunc of X,Y holds f"Q c= X; 

 

redefine func f"Q -> Subset of X; 

 

48 for f being Function of X,Y st Y = {} implies X = {}  

     holds f"Y = X; 

49 for f being Function of X,Y 

     holds (for y st y in Y holds f"{y} <> {})iff rng f = Y; 

50 for f being Function of X,Y 

      st (Y = {} implies X = {}) & P c= X holds P c=f"(f.:P); 
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51 for f being Function of X,Y st Y = {} implies X = {}  

     holds f"(f.:X) = X; 

53 for f being Function of X,Y for g being Function of Y,Z 

     st (Z = {} implies Y = {}) & (Y = {} implies X= {}) 

     holds f"Q c= (g*f)"(g.:Q); 

54 for f being Function of {},Y holds dom f = {} & rng f = {}; 

55 for f being Function st dom f = {} holds f is Function of {},Y; 

56 for f1 being Function of {},Y1 for f2 being Function of {},Y2  

     holds f1 = f2; 

58 for f being Function of {},Y holds f is one-to-one; 

59 for f being Function of {},Y holds f.:P = {}; 

60 for f being Function of {},Y holds f"Q = {}; 

61 for f being Function of {x},Y st Y <> {} holds f.x in Y; 

62 for f being Function of {x},Y st Y <> {} holds rng f = {f.x}; 

63 for f being Function of {x},Y st Y <> {} holds f is one-to-one; 

64 for f being Function of {x},Y st Y <> {} holds f.:P c= {f.x}; 

65 for f being Function of X,{y} st x in X holds f.x = y; 

66 for f1,f2 being Function of X,{y} holds f1 = f2; 

 

redefine func g*f -> Function of X,X; 

redefine func id X -> Function of X,X; 

 

67 for f being Function of X,X holds dom f = X & rng f c= X; 

70 for f being Function of X,X, g being Function 

st x in X holds (g*f).x = g.(f.x); 

73 for f,g being Function of X,X st rng f = X & rng g = X 

     holds rng(g*f) = X; 

74 for f being Function of X,X holds f*(id X) = f & (id X)*f = f; 

75 for f,g being Function of X,X st g*f = f & rng f = X  

     holds g = id X; 

76 for f,g being Function of X,X st f*g = f & f is one-to-one 

     holds g = id X; 

77 for f being Function of X,X holds f is one-to-one iff 

     for x1,x2 st x1 in X & x2 in X & f.x1 = f.x2holds x1 = x2; 

79 for f being Function of X,X holds f.:X = rng f; 

82 for f being Function of X,X holds f"(f.:X) = X; 

 

def 3 attr f is onto means rng f = Y; 

def 4 attr f is bijective means f is one-to-one onto; 

 

cluster bijective -> one-to-one onto Function of X,Y; 

cluster one-to-one onto -> bijective Function of X,Y; 
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cluster bijective Function of X,X; 

 

mode Permutation of X is bijective Function of X,X; 

 

83 for f being Function of X, X holds 

     f is Permutation of X iff f is one-to-one & rngf = X; 

85 for f being Function of X,X st f is one-to-one holds 

     for x1,x2 st x1 in X & x2 in X & f.x1 = f.x2holds x1 = x2; 

 

redefine func g*f -> Permutation of X; 

 

redefine func id X -> Permutation of X; 

 

redefine func f" -> Permutation of X; 

 

86 for f,g being Permutation of X st g*f = g holds f = id X; 

87 for f,g being Permutation of X st g*f = id X holds g = f"; 

88 for f being Permutation of X holds (f")*f =id X & f*(f") = id X; 

92 for f being Permutation of X st P c= X  

     holds f.:(f"P) = P & f"(f.:P) = P; 

93 for f being Function of X,X st f is one-to-one 

     holds f.:P = (f")"P & f"P = (f").:P; 

 

reserve C,D,E for non empty set; 

 

cluster quasi_total -> total PartFunc of X,D; 

 

redefine func g*f -> Function of X,Z; 

 

reserve c for Element of C; 

reserve d for Element of D; 

 

redefine func f.c -> Element of D; 

 

scheme FuncExD{C, D() -> non empty set, P[set,set]}: 

ex f being Function of C(),D() st for x being Element of C()  

holds P[x,f.x] 

provided 

for x being Element of C() ex y being Element of D() st P[x,y]; 

 

scheme LambdaD{C, D() -> non empty set,  
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F(Element of C()) -> Element of D()}: 

ex f being Function of C(),D() st 

for x being Element of C() holds f.x = F(x); 

 

113 for f1,f2 being Function of X,Y st 

       for x being Element of X holds f1.x = f2.x holds f1 = f2; 

116 for f being Function of C,D for d  

       holds d in f.:P iff ex c st c in P & d =f.c; 

118 for f1,f2 being Function of [:X,Y:],Z 

       st for x,y st x in X & y in Y holds f1.[x,y]= f2.[x,y] 

       holds f1 = f2; 

119 for f being Function of [:X,Y:],Z st x in X & y in Y & Z <> {} 

       holds f.[x,y] in Z; 

 

scheme FuncEx2{X, Y, Z() -> set, P[set,set,set]}: 

ex f being Function of [:X(),Y():],Z() st 

for x,y st x in X() & y in Y() holds P[x,y,f.[x,y]] 

provided 

for x,y st x in X() & y in Y() ex z st z in Z() & P[x,y,z]; 

 

scheme Lambda2{X, Y, Z() -> set, F(set,set)->set}: 

ex f being Function of [:X(),Y():],Z() 

st for x,y st x in X() & y in Y() holds f.[x,y] = F(x,y) 

provided 

for x,y st x in X() & y in Y() holds F(x,y) in Z(); 

 

120 for f1,f2 being Function of [:C,D:],E st for c,d  

       holds f1.[c,d] = f2.[c,d] holds f1 = f2; 

 

scheme FuncEx2D{X, Y, Z() -> non empty set, P[set,set,set]}: 

ex f being Function of [:X(),Y():],Z() st 

for x being Element of X() for y being Element of Y() holds 

P[x,y,f.[x,y]] 

provided 

for x being Element of X() for y being Element of Y() 

ex z being Element of Z() st P[x,y,z]; 

 

scheme Lambda2D{X, Y, Z() -> non empty set, 

F(Element of X(),Element of Y()) -> Element of Z()}: 

ex f being Function of [:X(),Y():],Z() 

st for x being Element of X() for y being Element of Y()  

holds f.[x,y]=F(x,y); 
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121 for f being set st f in Funcs(X,Y) holds f is Function of X,Y; 

 

scheme Lambda1C{A, B() -> set, C[set], F(set)->set, G(set)->set}: 

ex f being Function of A(),B() st 

for x st x in A() holds 

(C[x] implies f.x = F(x)) & (not C[x] implies f.x = G(x)) 

provided 

for x st x in A() holds 

(C[x] implies F(x) in B()) & (not C[x] implies G(x) in B()); 

 

123 for f being Function of {},Y holds f = {}; 

124 for f being Function of X,Y st f is one-to-one 

      holds f" is PartFunc of Y,X; 

125 for f being Function of X,X st f is one-to-one  

      holds f" is PartFunc of X,X; 

127 for f being Function of X,Y st Y = {}  

      implies X = {} holds <:f,X,Y:> = f; 

128 for f being Function of X,X holds <:f,X,X:> = f; 

130 for f being PartFunc of X,Y st dom f = X  

      holds f is Function of X,Y; 

131 for f being PartFunc of X,Y st f is total  

      holds f is Function of X,Y; 

132 for f being PartFunc of X,Y st (Y = {}  

      implies X = {}) & f is Function of X,Y holdsf is total; 

133 for f being Function of X,Y 

      st (Y = {} implies X = {}) holds <:f,X,Y:> is total; 

134 for f being Function of X,X holds <:f,X,X:> is total; 

136 for f being PartFunc of X,Y st Y = {} implies X = {} 

      ex g being Function of X,Y st for x st x in dom f  

      holds g.x = f.x; 

141 Funcs(X,Y) c= PFuncs(X,Y); 

142 for f,g being Function of X,Y st (Y = {}  

      implies X = {}) & f tolerates g holds f =g; 

143 for f,g being Function of X,X st f tolerates g holds f = g; 

145 for f being PartFunc of X,Y for g being Function of X,Y 

      st Y = {} implies X = {} 

      holds f tolerates g iff for x st x in dom f holdsf.x = g.x; 

146 for f being PartFunc of X,X for g being Function of X,X 

      holds f tolerates g iff for x st x in dom f holds f.x = g.x; 

148 for f being PartFunc of X,Y st Y = {} implies X = {} 

      ex g being Function of X,Y st f tolerates g; 
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149 for f being PartFunc of X,X ex g being Function of X,X st 

      f tolerates g; 

151 for f,g being PartFunc of X,Y for h being Function of X,Y 

      st (Y = {} implies X = {}) & f tolerates h & g tolerates h  

      holds f tolerates g; 

152 for f,g being PartFunc of X,X for h being Function of X,X 

      st f tolerates h & g tolerates h holds ftolerates g; 

154 for f,g being PartFunc of X,Y st (Y = {}  

      implies X = {}) & f tolerates g 

      ex h being Function of X,Y st f tolerates h &g tolerates h; 

155 for f being PartFunc of X,Y for g being Function of X,Y 

      st (Y = {} implies X = {}) & f toleratesg  

      holds g in TotFuncs f; 

156 for f being PartFunc of X,X for g being Function of X,X 

      st f tolerates g holds g in TotFuncs f; 

158 for f being PartFunc of X,Y for g being set 

      st g in TotFuncs(f) holds g is Function of X,Y; 

159 for f being PartFunc of X,Y holds TotFuncs f c= Funcs(X,Y); 

160 TotFuncs <:{},X,Y:> = Funcs(X,Y); 

161 for f being Function of X,Y st Y = {} implies X = {} 

      holds TotFuncs <:f,X,Y:> = {f}; 

162 for f being Function of X,X holds TotFuncs <:f,X,X:> = {f}; 

164 for f being PartFunc of X,{y} for g being Function of X,{y} 

      holds TotFuncs f = {g}; 

165 for f,g being PartFunc of X,Y 

      st g c= f holds TotFuncs f c= TotFuncs g; 

166 for f,g being PartFunc of X,Y 

      st dom g c= dom f & TotFuncs f c= TotFuncs g holds g c= f; 

167 for f,g being PartFunc of X,Y 

      st TotFuncs f c= TotFuncs g & (for y holdsY <> {y})  

      holds g c= f; 

168 for f,g being PartFunc of X,Y 

      st (for y holds Y <> {y}) & TotFuncs f =TotFuncs g holds f = g; 
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B.12 SQUARE_1 

Some Properties of Real Numbers Operations, by Andrzej Trybulec and 

Czeslaw Bylinski 

reserve a,b,c,x,y,z for real number; 

2 1 < x implies 1/x < 1; 

5 2*a = a+ a; 

6 a= (a-x)+x; 

8 x - y=0 implies x = y; 

ll x <  y implies 0 < y - x; 

12 x <  y implies 0 <=y - x; 

15 (x + x) /2 = x; 

16 l/(l/x) =x; 

17 x/(y*z) =x/y/z; 

18 x*(y/z) = (x*y)/z; 

19 0 <= x & 0 <= y implies 0 <= x*y; 

20 x <= 0 & y <= 0 implies 0 <= x*y; 

21 0 < x & 0 < y implies 0 < x*y; 

22 x < 0 & y < 0 implies 0 < x*y; 

23 0 <= x & y <= 0 implies x*y <= 0; 

24 0 < x & y < 0 implies x*y < 0; 

25 0 <= x*y implies 0 <= x & 0 <= y or x <= 0 & y <=0; 

26 0 < x*y implies 0 < x & 0 < y or x < 0 & y <0; 

27 0 <= a & 0 <= b implies 0 <= a/b; 

29 0 < x implies y - x < y; 

 

scheme RealContinuity { P[set], Q[set] } : 

 ex z st 

  for x,y st P[x] & Q[y] holds x <= z & z <= y 

provided 

 for x,y st P[x] & Q[y] holds x <= y; 

 

def 1 func min(x,y) -> real number equals x if x <= y otherwise y; 

def 2 func max(x,y) -> real number equals x if y <= x otherwise y; 

 

34 min(x,y) = (x + y - abs(x - y)) / 2; 

35 min(x,y) <= x; 

38 min(x,y) = x or min(x,y) = y; 

39 x <= y & x <= z iff x <= min(y,z); 

40 min(x,min(y,z)) = min(min(x,y),z); 
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45 max(x,y) = (x + y + abs(x-y)) / 2; 

46 x <= max(x,y); 

49 max(x,y) = x or max(x,y) = y; 

50 y <= x & z <= x iff max(y,z) <= x; 

51 max(x,max(y,z)) = max(max(x,y),z); 

53 min(x,y) + max(x,y) =x + y; 

54 max(x,min(x,y)) = x; 

55 min(x,max(x,y)) = x; 

56 min(x,max(y,z)) = max(min(x,y),min(x,z)); 

57 max(x,min(y,z)) = min(max(x,y),max(x,z)); 

 

def 3 func x^2 equals x*x; 

 

59 1^2 = 1; 

60 0^2 = 0; 

61 a^2 = (-a)^2; 

62 (abs(a))^2 = a^2; 

63 (a + b)^2 = a^2 + 2*a*b + b^2; 

64 (a - b)^2 = a^2 - 2*a*b + b^2; 

65 (a + 1)^2 = a^2 + 2*a + 1; 

66 (a - 1)^2 = a^2 - 2*a + 1; 

67 (a - b)*(a + b) = a^2 - b^2 & (a + b)*(a - b) = a^2 - b^2; 

68 (a*b)^2 = a^2*b^2; 

69 (a/b)^2 = a^2/b^2; 

70 a^2-b^2 <> 0 implies 1/(a+b) = (a-b)/(a^2-b^2); 

71 a^2-b^2 <> 0 implies 1/(a-b) = (a+b)/(a^2-b^2); 

72 0 <= a^2; 

73 a^2 = 0 implies a = 0; 

74 0 <> a implies 0 < a^2; 

75 0 < a & a < 1 implies a^2 < a; 

76 1 < a implies a < a^2; 

77 0 <= x & x <= y implies x^2 <= y^2; 

78 0 <= x & x < y implies x^2 < y^2; 

 

def 4 func sqrt a -> real number means 0 <= it & it^2 = a; 

 

82 sqrt 0 = 0; 

83 sqrt 1 = 1; 

84 1 < sqrt 2; 

85 sqrt 4 = 2; 

86 sqrt 2 < 2; 

89 0 <= a implies sqrt a^2 = a; 
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90 a <= 0 implies sqrt a^2 = -a; 

91 sqrt a^2 = abs(a); 

92 0 <= a & sqrt a = 0 implies a = 0; 

93 0 < a implies 0 < sqrt a; 

94 0 <= x & x <= y implies sqrt x <= sqrt y; 

95 0 <= x & x < y implies sqrt x < sqrt y; 

96 0 <= x & 0 <= y & sqrt x = sqrt y implies x = y; 

97 0 <= a & 0 <= b implies sqrt (a*b) = sqrt a * sqrt b; 

98 0 <= a*b implies sqrt (a*b) = sqrt abs(a)*sqrt abs(b); 

99 0 <= a & 0 <= b implies sqrt (a/b) = sqrt a/sqrt b; 

100 0 < a/b implies sqrt (a/b) = sqrt abs(a) / sqrt abs(b); 

101 0 < a implies sqrt (1/a) = 1/sqrt a; 

102 0 < a implies sqrt a/a = 1/sqrt a; 

103 0 < a implies a /sqrt a = sqrt a; 

104 0 <= a & 0 <= b 

       implies (sqrt a - sqrt b)*(sqrt a + sqrt b)= a - b; 

105 0 <= a & 0 <= b & a <>b 

       implies 1/(sqrt a+sqrt b) = (sqrt a - sqrt b)/(a-b); 

106 0 <= b & b < a 

       implies 1/(sqrt a+sqrt b) = (sqrt a - sqrt b)/(a-b); 

107 0 <= a & 0 <= b & a <> b 

       implies 1/(sqrt a-sqrt b) = (sqrt a + sqrt b)/(a-b); 

lO8 0 <= b & b < a 

       implies 1/(sqrt a-sqrt b) = (sqrt a + sqrt b)/(a-b); 
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B.13 REAL_2 

Equalities and Inequalities in Real Numbers. Continuation of Real_1 

byAndrzej Kondracki 

 

reserve a,b,d,e for real number; 

 

1 b-a=b implies a=0; 

2 a+-b=0 or -a=-b or a-e=b-e or a-e=b+-e 

      or e-a=e-b or e-a=e+-b implies a=b; 

5 -a-b=-b-a; 

6 -(a+b)=-a+-b & -(a+b)=-b-a; 

8 -(a-b)=-a+b; 

9 -(-a+b)=a-b & -(-a+b)=a+-b; 

10 a+b=-(-a-b) & a+b=-(-a+-b) & a+b=a--b; 

ll a=a+b+-b; 

12 b=a-(a-b); 

13 a+b=e+d implies a-e=d-b; 

14 a-e=d-b implies a+b=e+d; 

15 a-b=e-d implies a-e=b-d; 

16 a+b=e-d implies a+d=e-b; 

17 a=a+(b-b) & a=a+(b+-b) & a=a-(b-b) & a=a-(b+-b) & a=-b-(-a-b); 

18 a-(b-e)=a+(e-b); 

20 a+(-b-e)=a-b-e & a-(-b-e)=a+b+e; 

22 a+b-e=a-e+b & a+b-e=-e+a+b; 

23 a-b+e=e-b+a & a-b+e=-b+e+a; 

24 a-b-e=a-e-b & a-b-e=-b-e+a & a-b-e=-e+a-b & a-b-e=-e-b+a; 

25 -a+b-e=-e+b-a & -a+b-e=-e-a+b; 

26 -a-b-e=-a-e-b & -a-b-e=-b-e-a & -a-b-e=-e-a-b & -a-b-e=-e-b-a; 

27 -(a+b+e)=-a-b-e & -(a+b-e)=-a-b+e & -(a-b+e)=-a+b-e 

     & -(-a+b+e)=a-b-e & -(a-b-e)=-a+b+e & -(-a+b-e)=a-b+e 

     & -(-a-b+e)=a+b-e & -(-a-b-e)=a+b+e; 

28 a+e=(a+b)+(e-b) & a+e=(a+b)-(b-e); 

29 a-e=(a-b)-(e-b) & a-e=(a-b)+(b-e) & a-e=(a+b)-(e+b); 

30 b<>0 implies (a/b=1 or a*b"=1 implies a=b); 

31 e<>0 & a/e=b/e implies a=b; 

33 a"=b" or 1/a=1/b or 1/a=b" implies a=b; 

34 b<>0 & a/b=-1 implies a=-b & b=-a; 

35 a*b=l implies a=l/b & a=b" 

36 b<>0 implies (a=l/b or a=b" implies a*b=l & a"=b& b=l/a); 
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37 b<>0 & a*b=b implies a=1; 

38 b<>0 & a*b=-b implies a=-1; 

39 a<>0 & b<>0 & b/a=b implies a=1; 

40 a<>0 & b<>0 & b/a=-b implies a=-1; 

41 a<>0 implies 1/a<>0; 

42 a<>0 & b<>0 implies a*b"<>0 & a/b<>0& a"*b"<>0 & 1/(a*b)<>0; 

45 (-a)"=-a" & (a<>0 implies (-a)/a=-1 & a/(-a)=-1); 

46 a<>0 implies (a=a" or a=1/a implies a=1 or a=-1); 

47 (a*b")"=a"*b & (a"*b")"=a*b; 

48 1/(a/b)=b/a & (a/b)"=b/a; 

49 (-a)*(-b)=a*b & -a*(-b)=a*b & -(-a)*b=a*b; 

50 b<>0 implies (a/b=0 iff a=0); 

51 (1/a)*(1/b)=1/(a*b); 

53 (a/e)*(b/d)=(a/d)*(b/e); 

55 e<>0 implies a/b=(a/e)/(b/e) 

      & a/b=a/(b*e)*e & a/b=e*(a/e/b) & a/b=a/e*(e/b); 

56 a*(1/b)=a/b; 

57 a/(1/b)=a*b; 

58 -a/(-b)=a/b & -(-a)/b =a/b & (-a)/(-b)=a/b & (-a)/b=a/(-b); 

61 a/(b/e)=a*(e/b) & a/(b/e)=e/b*a & a/(b/e)=e*(a/b) & a/(b/e)=a/b*e; 

62 b<>0 implies a=a*(b/b) & a=a*b/b & a=a*b*(1/b) 

      & a=a/(b/b) & a=a/(b*(1/b)) & a=a*(1/b*b)& a=a*(1/b)*b; 

63 for a,b ex e st a=b-e; 

64 for a,b st a<>0 & b <>0 ex e st a=b/e; 

65 b<>O implies a/b+e=(a+b*e)/b; 

66 b<>0 implies a/b-e=(a-e*b)/b & e-a/b=(e*b-a)/b; 

67 a/b/e=a/e/b & a/b/e=1/b*(a/e) & a/b/e=1/e*(a/b) & 1/e*(a/b)=a/(b*e); 

70 (a*b)/(e*d)=(a/e*b)/d; 

71 (-1)*a=-a & (-a)*(-l)=a & -a=a/(-l) & a=(-a)/(-l); 

74 a<>0 & e<>0 & a=b/e implies e=b/a; 

75 e<>0 & d<>0 & a*e=b*d implies a/d=b/e; 

76 e<>0 & d<>0 & a/d=b/e implies a*e=b*d; 

77 e<>0 & d<>0 & a*e=b/d implies a*d=b/e; 

78 b<>0 implies a*e=a*b (e/b); 

79 b<>0 & e<>0 implies a*e=a*b/(b/e); 

80 a/b*e=e/b*a & a/b*e=1/b*a*e & a/b*e=1/b*e*a; 

82 b<>0 & d<>0 & b<>d & a/b=e/d implies a/b=(a-e)/(b-d); 

83 b<>0 & d<>0 & b<>-d & a/b=e/d impliesa/b=(a+e)/(b+d); 

85 (a-b)*e=(b-a)*(-e) & (a-b)*e=-(b-a)*e; 

88 3*a=a+a+a & 4*a=a+a+a+a; 

89 (a+a+a)/3=a & (a+a+a+a)/4=a & (a+a)/4=a/2; 

90 a/4+a/4+a/4+a/4=a; 
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91 a/(2*b)+a/(2*b)=a/b & a/(3*b)+a/(3*b)+a/(3*b)=a/b; 

92 e<>0 implies a+b=e*(a/e+b/e); 

93 e<>0 implies a-b=e*(a/e-b/e); 

94 e<>0 implies a+b=(a*e+b*e)/e; 

95 e<>0 implies a-b=(a*e-b*e)/e; 

96 a<>0 implies a+b=a*(1+b/a); 

97 a<>0 implies a-b=a*(1-b/a); 

98 (a-b)*(e-d)=(b-a)*(d-e); 

99 (a+b+e)*d=a*d+b*d+e*d & (a+b-e)*d=a*d+b*d-e*d 

      & (a-b+e)*d=a*d-b*d+e*d & (a-b-e)*d=a*d-b*d-e*d; 

100 (a+b+e)/d=a/d+b/d+e/d & (a+b-e)/d=a/d+b/d-e/d 

      & (a-b+e)/d=a/d-b/d+e/d & (a-b-e)/d=a/d-b/d-e/d; 

101 (a+b)*(e+d)=a*e+a*d+b*e+b*d & (a+b)*(e-d)=a*e-a*d+b*e-b*d 

      & (a-b)*(e+d)=a*e+a*d-b*e-b*d & (a-b)*(e-d)=a*e-a*d-b*e+b*d; 

105 (a+-b<=0 or b-a>=0 or b+-a>=0 

      or a-e<=b+-e or a+-e<=b-e or e-a>=e-b) impliesa<=b; 

106 (a+-b<0 or b-a>0 or -a+b>0 

      or a-e<b+-e or a+-e<b-e or e-a>e-b) impliesa<b; 

109 a<=-b implies a+b<=0 & -a>=b; 

110 a<-b implies a+b<0 & -a>b; 

111 -a<=b implies a+b>=0; 

112 -b<a implies a+b>0; 

117 b>0 implies (a/b>1 implies a>b) & (a/b<1 implies a<b) 

    & (a/b>-1 implies a>-b & b>-a) & (a/b<-1implies a<-b & b<-a); 

118 b>0 implies (a/b>=1 implies a>=b) & (a/b<=1 impliesa<=b) 

    & (a/b>=-1 implies a>=-b & b>=-a) &(a/b<=-1 implies a<=-b & b<=-a); 

119 b<0 implies (a/b>1 implies a<b) & (a/b<1 implies a>b) 

    & (a/b>-1 implies a<-b & b<-a) & (a/b<-1implies a>-b & b>-a); 

120 b<0 implies (a/b>=1 implies a<=b) & (a/b<=1 impliesa>=b) 

    & (a/b>=-1 implies a<=-b & b<=-a) &(a/b<=-1 implies a>=-b & b>=-a); 

121 a>=0 & b>=0 or a<=0 & b<=0 implies a*b>=0; 

122 a<0 & b<0 or a>0 & b>0 implies a*b>0; 

123 a>=0 & b<=0 or a<=0 & b>=0 implies a*b<=0; 

125 a<=0 & b<0 or a>=0 & b>0 implies a/b>=0; 

126 a>=0 & b<0 or a<=0 & b>0 implies a/b<=0; 

127 a>0 & b>0 or a<0 & b<0 implies a/b>0; 

128 a<0 & b>0 implies a/b<0 & b/a<0; 

129 a*b<=0 implies a>=0 & b<=0 or a<=0 & b>=0; 

132 a*b<0 implies a>0 & b<0 or a<0 & b>0; 

133 b<>0 & a/b<=0 implies b>0 & a<=0 or b<0 &a>=0; 

134 b<>0 & a/b>=0 implies b>0 & a>=0 or b<0 &a<=0; 

135 b<>0 & a/b<0 implies b<0 & a>0 or b>0 &a<0; 
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136 b<>0 & a/b>0 implies b>0 & a>0 or b<0 &a<0; 

137 a>=1 & b>=1 or a<=-1 & b<=-1 implies a*b>=1; 

138 a>=1 & b>=1 or a<=-1 & b<=-1 implies a*b>=1; 

139 0<=a & a<1 & 0<=b & b<=1 or 0>=a & a>-1& 0>=b & b>=-1 

      implies a*b<1; 

140 0<=a & a<=1 & 0<=b & b<=1 or 0>=a & a>=-1 & 0>=b & b>=-1 

     implies a*b<=1; 

142 0<a & a<b or b<a & a<0 implies a/b<1 & b/a>1; 

143 0<a & a<=b or b<=a & a<0 implies a/b<=1 &b/a>=1; 

144 a>0 & b>1 or a<0 & b<1 implies a*b>a; 

145 a>0 & b<1 or a<0 & b>1 implies a*b<a; 

146 a>=0 & b>=1 or a<=0 & b<=1 implies a*b>=a; 

147 a>=0 & b<=1 or a<=0 & b>=1 implies a*b<=a; 

149 a<0 implies 1/a<0 & a"<0; 

150 (1/a<0 implies a<0) & (1/a>0 implies a>0); 

151 (0<a or b<0) & a<b implies 1/a>1/b; 

152 (0<a or b<0) & a<=b implies 1/a>=1/b; 

153 a<0 & b>0 implies 1/a<1/b; 

154 (1/b>0 or 1/a<0) & 1/a>1/b implies a<b; 

155 (1/b>0 or 1/a<0) & 1/a>=1/b implies a<=b; 

156 1/a<0 & 1/b>0 implies a<b; 

157 a<-1 implies 1/a>-1; 

158 a<=-1 implies 1/a>=-1; 

164 1<=a implies 1/a<=1; 

165 (b<=e-a implies a<=e-b) & (b>=e-a implies a>=e-b); 

167 a+b<e+d implies a-e<d-b; 

168 a+b<e+d implies a-e<d-b; 

169 a-b<e-d implies a+d<e+b & a-e<b-d & e-a<d-b &b-a<d-e; 

170 a-b<e-d implies a+d<e+b & a-e<b-d & e-a<d-b &b-a<d-e; 

171 (a+b<e-d implies a+d<e-b) & (a+b<e-d implies a+d<e-b); 

173 (a<0 implies a+b<b & b-a<b) & (a+b<b or b-a<bimplies a<0); 

174 (a<=0 implies a+b<=b & b-a>=b) & (a+b<=b or b-a>=b implies a<=0); 

177 (b>0 & a*b<=e implies a<=e/b) & (b<0 & a*b<=eimplies a>=e/b) & 

     (b>0 & a*b>=e implies a>=e/b) & (b<0& a*b>=e implies a<=e/b); 

178 (b>0 & a*b<e implies a<e/b) & (b<0 & a*b<eimplies a>e/b) & 

     (b>0 & a*b>e implies a>e/b) & (b<0& a*b>e implies a<e/b); 

181 (for a st a>0 holds b+a>=e) 

        or (for a st a<0 holds b-a>=e) impliesb>=e; 

182 (for a st a>0 holds b-a<=e) 

        or (for a st a<0 holds b+a<=e) impliesb<=e; 

183 (for a st a>1 holds b*a>=e) 

        or (for a st 0<a & a<1 holds b/a>=e)implies b>=e; 
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184 (for a st 0<a & a<1 holds b*a<=e) 

        or (for a st a>1 holds b/a<=e) impliesb<=e; 

185 (b>0 & d>0 or b<0 & d<0) & a*d<e*b impliesa/b<e/d; 

186 (b>0 & d<0 or b<0 & d>0) & a*d<e*b impliesa/b>e/d; 

187 (b>0 & d>0 or b<0 & d<0) & a*d<=e*b impliesa/b<=e/d; 

188 (b>0 & d<0 or b<0 & d>0) & a*d<=e*b impliesa/b>=e/d; 

193 b<0 & d<0 or b>0 & d>0 implies 

      (a*b<e/d implies a*d<e/b) & (a*b>e/dimplies a*d>e/b); 

194 b<0 & d>0 or b>0 & d<0 implies 

      (a*b<e/d implies a*d>e/b) & (a*b>e/dimplies a*d<e/b); 

197 (0<a or 0<=a) & (a<b or a<=b) & (0<e or 0<=e)& e<=d 

       implies a*e<=b*d; 

198 0>=a & a>=b & 0>=e & e>=d implies a*e<=b*d; 

199 0<a & a<=b & 0<e & e<d or 0>a & a>=b& 0>e & e>d implies a*e<b*d; 

200 (e>0 & a>0 & a<b implies e/a>e/b) &  

     (e>0 & b<0 & a<b implies e/a>e/b); 

201 e>=0 & (a>0 or b<0) & a<=b implies e/a>=e/b; 

202 e<0 & (a>0 or b<0) & a<b implies e/a<e/b; 

203 e<=0 & (a>0 or b<0) & a<=b implies e/a<=e/b; 

204 for X,Y being Subset of REAL st 

      X<>{} & Y<>{} & for a,b st a inX & b in Y holds a<=b 

      holds ex d st (for a st a in X holds a<=d) &for b st b in Y  

      holds d<=b; 
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Appendix C  
C.1 Contacting the Mizar Society 
C.1.1 Mizar Society 

Association of Mizar Users 

University of Bialystok 

Institute of Mathematics 

ul. Akademicka 2 

15-267 Bialystok, Poland 

 

Fax: +48-85-745-75-45 

E-mail: mus@mizar.uwb.edu.pl 

WWW: http://mizar.org/ 

 

C.1.2 Mizar Society Nagano Circle 

4-17-1 Wakasato Nagano-shi, Nagano-ken, 380-8553 JAPAN 

 

Shinshu University, Information Engineering of the Engineering Faculty 

Nakamura lab. 

Mizar Society Nagano Circle 

 

Fax: +81-26- 269-5495 

E-mail: kiso@cs.shinshu-u.ac.jp 
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C.2 Acquisition of Mizar by ftp 

Mizar can be acquired by anonymous ftp from the ftp server of Japan and Poland 

which are shown below. 

 

Japan: 

    ftp://markun.cs.shinshu-u.ac.jp/pub/mizar/ 

    ftp://nicosia.is.s.u-tokyo.ac.jp/pub/misc/pcmizar/ 

 

Poland: 

    ftp://ftp.mizar.org/ 

    ftp://mizar.uwb.edu.pl/pub/system/ 

    ftp://sunsite.icm.edu.pl/pub/mizar/ 

 

 

    The file names of Mizar are the following, X shows the version of Mizar software, 

and Y shows the version of MML. 

 

MS-DOS version: mizar-X_Y-win32.exe 

Linux version:  mizar-X_Y-linux.tar 

 

    For example, when X is 6.1.12 and Y is 3.33.722, "mizar-6.1.12_3.33.722-

win32.exe" is the MS-DOS version Mizar file of which Mizar Version is 6.1.12 and 

MML vsersion is 3.33.722. In addition, the file of a MS-DOS version is a self-

extracting file. 

 

 

C.3 How to submit Articles via the Internet 

We attach the accomplished MIZ file, the VOC file, the BIB file, etc. on e-mail, and 

send them. If they are attached with a text, fault may arise in conversion of     

8bit->7bit. 
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    So, for example, it is possible to send, after specifying a type and encoding as 

follows. 

 

 

  Type: audio/x-mpeg 

  Encoding: base64 

 

 

    Or it is also good to attach them to e-mail and to send them, after compressing 

them into the file of general compressed format (for example, PKZIP, ARJ, RAR and 

TAR, GZIP, etc.). 

    A destination is the MIZAR Library Committee: 

 

  mml@mizar.uwb.edu.pl 

 

 

C.4 WWW Homepage 

The URL for the Mizar homepage is http://mizar.org/. 

    Here, all abstract files are put up in html format. Moreover, since a link can also 

be followed about where terminology was defined first, it is very convenient. 

    And then, these mirror servers are in Shinshu University of Japan, University of 

Alberta of Canada, etc. 

 

Mirror servers： 

http://mizar.uwb.edu.pl/ 

(University of Bialystok, Bialystok, Poland) 

 

http://www.cs.ualberta.ca/~piotr/Mizar/mirror/http/ 

(University of Alberta, Edmonton, Canada) 
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http://markun.cs.shinshu-u.ac.jp/Mirror/mizar/htdocs/ 

(Shinshu University, Nagano, Japan) 

 

 

C.5 Formalized Mathematics 

When the Mizar articles are accepted, they are automatically translated into 

English theses and are placed in Formalized Mathematics. This is published from 

the Warsaw University Bialystok Branch several times per year. Up until the end of 

1998, a total of 7 volumes have been published, all articles registered into the Mizar 

library are entered in these volumes as an English paper. 

    For more information about Formalized Mathematics, please contact the following.  

 

 

    Fondation for Information Technology 

    Logic and Mathematics 

    Krochmalna 3/917 

    00-864 Warsaw 

    Poland 

 

    Fax: +48(85) 745.74.78 

    E-mail: romat@mizar.org 

 

 

    Formal name of Formalized Mathematics: 

 

    Formalized Mathematics, 

    Edited by Warsaw University-Bialystok Branch, 

    Roman Matuszewaki. 

    ISSN 1426-2630. 
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Conclusion 
 

This original book was improved and edited by Watanabe and Tanaka based on the 

lectures by Nakamura on Sep.5th, 1992 at Shinshu University. 

    Mizar of those days was based on the version 3.29, and some part of it was based 

on the Mizar version 4.09. 

   The contents of this book are the 4th edition based on the version 6.1.12 which is 

the latest version as of June, 2002 through the revised edition which is referring to 

the Mizar version 5.2.12, and the 3rd edition which is referring to the version 5.3.06. 

    Please note that Mizar versions are frequently updated. 

 

         Authors 
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