SQUARE_1.ABS (Digest)
Some Properties of Real Numbers, by Andrej Trybulec and
reserve a,b,c,x,x',x1,x2,y,y',z for Real;
2 1 < x implies 1/x < 1; 3 1/2 < 1; 4 2" <1; 5 2a = a + a; 6 a = (a-x)+x; 8 x - y = 0 implies x = y; 10 a a + 1; 11 x < y implies 0 < y - x; 12 x y implies 0 y - x; 13 1" = 1; 14 x/1 = x; 15 (x + x)/2 = x; 16 x< >0 implies 1/(1/x) = x; 17 y< >0 & z < > 0 implies x/(yz)=x/y/z; 18 z< >0 implies x (y/z) = (xy)/z; 19 0 x & 0 y implies 0 x y; 20 x 0 & y 0 implies 0 xy; 21 0 < x & 0 < y implies 0 < x y; 22 x < 0 & y < 0 implies 0 < x y; 23 0 x & y 0 implies xy 0 & yx 0; 24 0 < x & y < 0 implies x y < 0 & y x < 0; 25 0 xy implies 0x & 0 y or x 0 & y 0; 26 0 < xy implies 0 < x & 0 < y or x < 0 & y < 0; 27 0 a & 0 < b implies 0 a/b; 29 0 < x implies y - x < y;scheme RealContinuity { P[Any], Q[Any] } : ex z st for x,y st P[x] & Q[y] holds x z & z y provided ex x st P[x] and for x,y st P[x] & Q[y] holds xy;
def 1 func min(x,y) -> Real means it = x if x y otherwise it = y; def 2 func max(x,y) -> Real means it = x if y x otherwise it = y;
32 y x implies min(x,y) = y; 33 not y x implies min(x,y) = x; 34 min(x,y) = (x + y - |.x - y.|)/2; 35 min(x,y) x & min(y,x) x; 36 min(x,x) = x; 37 min(x,y) = min(y,x); 38 min(x,y) = x or min(x,y) = y; 39 x y & x z iff x min(y,z); 40 min(x,min(y,z)) = min(min(x,y),z); 43 x y implies max(x,y) = y; 44 not x y implies max(x,y) = x; 45 max(x,y) = (x + y + |.x - y.|)/2; 46 x max(x,y) & x max(y,x); 47 max(x,x) = x; 48 max(x,y) = max(y,x); 49 max(x,y)= x or max(x,y) = y; 50 y x & z x iff max(y,z) x; 51 max(x,max(y,z)) = max(max(x,y),z); 53 min(x,y) + max(x,y) = x + y; 54 max(x,min(x,y)) = x & max(min(x,y),x) = x & max(min(y,x),x) = x & max(x,min(y,x)) = x; 55 min(x,max(x,y)) = x & min(max(x,y),x) = x & min(max(y,x),x) = x & min(x,max(y,x)) = x; 56 min(x,max(y,z)) = max(min(x,y),min(x,z)) & min(max(y,z),x) = max(min(y,x),min(z,x)); 57 max(x,min(y,z)) = min(max(x,y),max(x,z)) & max(min(y,z),x) = min(max(y,x),max(z,x));
def 3 func x^2-> Element of REAL means it = x x;
58 x^2 = xx; 59 1^2 = 1; 60 0^2 = 0; 61 a^2 = (-a)^2; 62 |.a.|^2 = a^2; 63 (a + b)^2 = a^2 + 2ab + b^2; 64 (a - b)^2 = a^2 - 2ab + b^2; 65 (a + 1)^2 = a^2 + 2a + 1; 66 (a - 1)^2 = a^2 - 2a + 1; 67 (a - b)(a + b) = a^2 - b^2 & (a + b)(a - b) = a^2 - b^2; 68 (ab)^2 = a^2b^2; 69 0 < > b implies (a/b)^2 = a^2/b^2; 70 a^2-b^2 < > 0 implies 1/(a+b) = (a-b)/(a^2-b^2); 71 a^2-b^2 < > 0 implies 1/(a-b) = (a+b)/(a^2-b^2); 72 0a^2; 73 a^2 = 0 implies a = 0; 74 0 < > a implies 0 < a^2; 75 0< a & a < 1 implies a^2 < a; 76 1 < a implies a < a^2; 77 0 x & x y implies x^2 y^2; 78 0 x & x < y implies x^2 < y^2;
def 4 func a -> Real means 0 it & it^2 = a;
82 0 = 0; 83 1 = 1; 84 1 < 2; 85 4 = 2; 86 2 < 2; 87 0 a implies 0 a; 88 0 a implies (a)^2 = a; 89 0 a implies a^2 = a; 90 a 0 implies a^2 = -a; 91 a^2 = |.a.|; 92 0 a & a = 0 implies a = 0; 93 0< a implies 0 < a; 94 0 x & x y implies x y; 95 0 x & x < y implies x < y; 96 0 x & 0 y & x = y implies x = y; 97 0 a & 0 b implies (ab) = ab; 98 0 ab implies (ab) = |.a.||.b.|; 99 0 a & 0 < b implies (a/b) = a/b; 100 0 < a/b & b < > 0 implies (a/b) = |.a.|/|.b.|; 101 0 < a implies (1/a) = 1/a; 102 0 < a implies a/a = 1/a; 103 0 < a implies a /a = a; 104 0 a & 0 b implies (a - b)(a + b) = a - b; 105 0 a & 0 b & a < > b implies 1/(a+b) = (a - b)/(a-b); 106 0 b & b < a implies 1/(a+b) = (a - b)/(a-b); 107 0 a & 0 b & a < > b implies 1/(a-b) = (a + b)/(a-b); 108 0 b & b < a implies 1/(a-b) = (a + b)/(a-b);