'Swi
c{e}czkowsk
reserve z,y,z for Any, X,Y,Z,V for set;
scheme Separation {A( )-> set, P[Any] }:
def 2 func X U Y -> set means x C it iff x C X or x C Y;
def 3 func X
Y -> set means x C it iff x C X & x C Y;
def 4 func X
Y -> set means x C it iff x C X & not x C Y;
def 5 pred X meets Y means ex x st x C X & not x C Y;
Y -> set means it = (X
Y) U (Y
X);8 x C X U Y iff x C X or x C Y;
9 x C X
Y iff x C X & x C Y;
10 x C X
Y iff x C X & not x C Y;
12 x C X & X misses Y implies not x C Y;
13 x C X & x C Y implies X meets Y;
15 X meets Y implies ex x st x C X & x C Y;
17 (for x st x C X holds not x C Y) implies X misses Y;
18 (for x holds x C X iff x C Y or x C Z) implies X = Y U Z;
19 (for x holds x C X iff x C Y & x C Z)implies X = Y
Z;
20 (for x holds x C X iff x C Y & not x C Z) implies X = Y
Z;
23 x C X
Y iff not (x C X iff x C Y);
24 x C X & x C Y implies X
Y < >
;
25 (for x holds not x C X iff (x C Y iff x C Z))implies X = Y
Z;
27
c= X;
28 X c= Y & Y c= X implies X = Y;
29 X c= Y & Y c= Z implies X c= Z;
30 X c=
implies X =
;
31 X c= X U Y;
32 X c= Z & Y c= Z implies X U Y c= Z;
33 X c= Y implies X U Z c= Y U Z;
34 X c= Y & Z c= V implies X U Z c= Y U V;
35 X c= Y implies X U Y = Y;
37 X
Y c= X;
38 X
Y c= X U Z;
39 Z c= X & Z c= Y implies Z c= X
Y;
40 X c= Y implies X
Z c= Y
Z;
41 X c= Y & Z c= V implies X
Z c= Y
V;
42 X c= Y implies X
Y = X;
44 X c= Z implies X U Y
Z = (X U Y)
Z;
45 X
Y =
iff X c= Y;
46 X c= Y implies X
Z c= Y
Z;
47 X c= Y implies Z
Y c= Z
X;
48 X c= Y & Z c= V implies X
V c= Y
Z;
49 X
Y c= X;
50 X c= Y
X implies X =
;
51 X c= Y & X c= Z & Y
Z =
implies X =
;
52 X c= Y U Z implies X
Y c= Z & X
Z c= Y;
53 (X
Y) U (X
Z) = X implies X c= Y U Z;
54 X c= Y implies Y = X U (Y
X);
55 X c= Y & Y
Z =
implies X
Z =
;
56 X = Y U Z iff Y c= X & Z c= X & for V st Y c= V & Z c= V holds X c= V;
57 X = Y
Z iff X c= Y & X c= Z & for V st V c= Y & V c= Z holds V c= X;
58 X
Y c= X
Y;
59 X U Y =
iff X =
& Y =
;
60 X U
= X;
61 X
=
;
62 X U X = X;
64 (X U Y) U Z = X U (Y U Z);
65 X
X = X;
67 (X
Y)
Z = X
(Y
Z);
68 X
(X U Y) = X;
69 X U (X
Y) = X;
70 X
(Y U Z) = X
Y U X
Z;
71 X U Y
Z = (X U Y) ∩ (X U Z);
72 (X
Y) U (Y
Z) U (Z
X) = (X U Y)
(Y U Z)
(Z U X);
73 X
X =
;
74 X
= X;
75
X =
;
76 X
(X U Y) =
;
77 X
X
Y = X
Y;
78 (X
Y)
Y =
;
79 X U (Y
X) = X U Y;
80 X
Y U (X
Y) = X;
81 X
(Y
Z) = (X
Y) U X
Z;
82 X
(X
Y) = X
Y;
83 (X U Y)
Y = X
Y;
84 X
Y =
iff X
Y = X;
85 X
(Y U Z) = (X
Y)
(X
Z);
86 X
(Y
Z) = (X
Y) U (X
Z);
87 (X U Y)
(X
Y) = (X
Y) U (Y
X);
88 (X
Y)
Z = X
(Y U Z);
89 (X U Y)
Z = (X
Z) U (Y
Z);
90 X
Y = Y
X implies X = Y;
91 X
Y = (X
Y) U (Y
X);
92 X
= X &
X = X;
93 X
X =
;
95 X U Y = (X
Y) U X
Y;
96 X
Y = (X U Y)
X
Y;
97 (X
Y)
Z = (X
(Y U Z)) U (Y
(X U Z));
98 X
(Y
Z) = X
(Y U Z) U X
Y
X;
99 (X
Y)
Z = X
(Y
Z);
100 X meets Y U Z iff X meets Y or X meets Z;
101 X meets Y & Y c= Z implies X meets Z;
102 X meets Y
Z implies X meets Y;
104 X misses
;
110 X meets X iff X < >
;
111 X
Y misses X
Y;
112 X
Y misses X
Y;
113 X meets Y
Z implies X meets Y;
114 X c= Y & X c= Z & Y misses Z implies X =
;
115 X
Y c= Z & Y
X c= Z implies X
Y c= Z;
116 X
(Y
Z) = (X
Y)
Z;
117 X
(Y
Z) = X
Y
X
Z;
118 X misses Y iff X
Y =
;
119 X meets Y iff X
Y < >
;
120 X c= (Y U Z) & X
Z =
implies X c= Y;
121 Y c= X & X
Y =
implies Y =
;