B.3 BOOLE


BOOLE.ABS (Digest)


Boolean Properties of Sets, by Zinaida Trybulec and Halina 'Swic{e}czkowsk

reserve z,y,z for Any, X,Y,Z,V for set;

scheme Separation {A( )-> set, P[Any] }:

ex X st for x holds x C X iff x C A ( ) & P[x];

def 2 func X U Y -> set means x C it iff x C X or x C Y;
def 3 func X Y -> set means x C it iff x C X & x C Y;
def 4 func X Y -> set means x C it iff x C X & not x C Y;
def 5 pred X meets Y means ex x st x C X & not x C Y;

antonym X misses Y;
def 7 func X Y -> set means it = (X Y) U (Y X);
def 8 pred X = Y means X c= Y & Y c= X;

8 x C X U Y iff x C X or x C Y;
9 x C X Y iff x C X & x C Y;
10 x C X Y iff x C X & not x C Y;
12 x C X & X misses Y implies not x C Y;
13 x C X & x C Y implies X meets Y;
15 X meets Y implies ex x st x C X & x C Y;
17 (for x st x C X holds not x C Y) implies X misses Y;
18 (for x holds x C X iff x C Y or x C Z) implies X = Y U Z;
19 (for x holds x C X iff x C Y & x C Z)implies X = Y Z;
20 (for x holds x C X iff x C Y & not x C Z) implies X = Y Z;
23 x C X Y iff not (x C X iff x C Y);
24 x C X & x C Y implies X Y < > ;
25 (for x holds not x C X iff (x C Y iff x C Z))implies X = Y Z;
27 c= X;
28 X c= Y & Y c= X implies X = Y;
29 X c= Y & Y c= Z implies X c= Z;
30 X c= implies X = ;
31 X c= X U Y;
32 X c= Z & Y c= Z implies X U Y c= Z;
33 X c= Y implies X U Z c= Y U Z;
34 X c= Y & Z c= V implies X U Z c= Y U V;
35 X c= Y implies X U Y = Y;
37 X Y c= X;
38 X Y c= X U Z;
39 Z c= X & Z c= Y implies Z c= X Y;
40 X c= Y implies X Z c= Y Z;
41 X c= Y & Z c= V implies X Z c= Y V;
42 X c= Y implies X Y = X;
44 X c= Z implies X U Y Z = (X U Y) Z;
45 X Y = iff X c= Y;
46 X c= Y implies X Z c= Y Z;
47 X c= Y implies Z Y c= Z X;
48 X c= Y & Z c= V implies X V c= Y Z;
49 X Y c= X;
50 X c= Y X implies X = ;
51 X c= Y & X c= Z & Y Z = implies X = ;
52 X c= Y U Z implies X Y c= Z & X Z c= Y;
53 (X Y) U (X Z) = X implies X c= Y U Z;
54 X c= Y implies Y = X U (Y X);
55 X c= Y & Y Z = implies X Z = ;
56 X = Y U Z iff Y c= X & Z c= X & for V st Y c= V & Z c= V holds X c= V;
57 X = Y Z iff X c= Y & X c= Z & for V st V c= Y & V c= Z holds V c= X;
58 X Y c= X Y;
59 X U Y = iff X = & Y = ;
60 X U = X;
61 X = ;
62 X U X = X;
64 (X U Y) U Z = X U (Y U Z);
65 X X = X;
67 (X Y) Z = X (Y Z);
68 X (X U Y) = X;
69 X U (X Y) = X;
70 X (Y U Z) = X Y U X Z;
71 X U Y Z = (X U Y) ∩ (X U Z);
72 (X Y) U (Y Z) U (Z X) = (X U Y) (Y U Z) (Z U X);
73 X X = ;
74 X = X;
75 X = ;
76 X (X U Y) = ;
77 X X Y = X Y;
78 (X Y) Y = ;
79 X U (Y X) = X U Y;
80 X Y U (X Y) = X;
81 X (Y Z) = (X Y) U X Z;
82 X (X Y) = X Y;
83 (X U Y) Y = X Y;
84 X Y = iff X Y = X;
85 X (Y U Z) = (X Y) (X Z);
86 X (Y Z) = (X Y) U (X Z);
87 (X U Y) (X Y) = (X Y) U (Y X);
88 (X Y) Z = X (Y U Z);
89 (X U Y) Z = (X Z) U (Y Z);
90 X Y = Y X implies X = Y;
91 X Y = (X Y) U (Y X);
92 X = X & X = X;
93 X X = ;
95 X U Y = (X Y) U X Y;
96 X Y = (X U Y) X Y;
97 (X Y) Z = (X (Y U Z)) U (Y (X U Z));
98 X (Y Z) = X (Y U Z) U X Y X;
99 (X Y) Z = X (Y Z);
100 X meets Y U Z iff X meets Y or X meets Z;
101 X meets Y & Y c= Z implies X meets Z;
102 X meets Y Z implies X meets Y;
104 X misses ;
110 X meets X iff X < > ;
111 X Y misses X Y;
112 X Y misses X Y;
113 X meets Y Z implies X meets Y;
114 X c= Y & X c= Z & Y misses Z implies X = ;
115 X Y c= Z & Y X c= Z implies X Y c= Z;
116 X (Y Z) = (X Y) Z;
117 X (Y Z) = X Y X Z;
118 X misses Y iff X Y = ;
119 X meets Y iff X Y < > ;
120 X c= (Y U Z) & X Z = implies X c= Y;
121 Y c= X & X Y = implies Y = ;