TARSKI. ABS (Digest)
Tarski Grothendieck Set Theory, by Andrzej Trybulec.
reserve x, y, z, u for Any, N, M, X, Y, Z for set;
2 (for x holds x C X iff x C Y) implies X = Y;
def 1 func { y } -> non empty;
def 2 func { y, z } -> set means x C it iff x = y or x = z;
cluster { y } -> non empty;
cluster { y, z } -> non empty;
def 3 pred X c= Y means x C X implies x C Y;
def 4 func union X -> set means x C it iff ex Y st x C Y & Y C X;
6 X = bool Y iff for Z holds Z C X iff Z c= Y;
7 x C X implies ex Y st Y C X & not ex x st x C X & x C Y;
def 5 func [x,y] means it = { { x,y }, {x} };
8 [ x, y ] = { { x, y }, {x} };
def 6 pred X = Y means
9 ex M st N C M &