Journal of Formalized Mathematics
Volume 5, 1993
University of Bialystok
Copyright (c) 1993 Association of Mizar Users

Joining of Decorated Trees

Grzegorz Bancerek
Polish Academy of Sciences, Institute of Mathematics, Warsaw

Summary.

This is the continuation of the sequence of articles on trees (see [2], [4], [5]). The main goal is to introduce joining operations on decorated trees corresponding with operations introduced in [5]. We will also introduce the operation of substitution. In the last section we dealt with trees decorated by Cartesian product, i.e. we showed some lemmas on joining operations applied to such trees.

MML Identifier: TREES_4

The terminology and notation used in this paper have been introduced in the following articles [13] [9] [15] [14] [1] [16] [8] [10] [12] [11] [7] [6] [2] [4] [3] [5]

Contents (PDF format)

1. Joining of Decorated Tree
2. Expanding of Decorated Tree by Substitution
3. Double Decorated Trees

Bibliography

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989.
[2] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989.
[3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991.
[4] Grzegorz Bancerek. K\"onig's Lemma. Journal of Formalized Mathematics, 3, 1991.
[5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989.
[7] Czeslaw Bylinski. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989.
[8] Czeslaw Bylinski. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989.
[9] Czeslaw Bylinski. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989.
[10] Agata Darmochwal. Finite sets. Journal of Formalized Mathematics, 1, 1989.
[11] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989.
[12] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989.
[14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003.
[15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.
[16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989.